基于意图辨识的线控汽车紧急转向控制方法.doc

上传人:gs****r 文档编号:1757423 上传时间:2019-03-14 格式:DOC 页数:7 大小:109KB
下载 相关 举报
基于意图辨识的线控汽车紧急转向控制方法.doc_第1页
第1页 / 共7页
基于意图辨识的线控汽车紧急转向控制方法.doc_第2页
第2页 / 共7页
基于意图辨识的线控汽车紧急转向控制方法.doc_第3页
第3页 / 共7页
基于意图辨识的线控汽车紧急转向控制方法.doc_第4页
第4页 / 共7页
基于意图辨识的线控汽车紧急转向控制方法.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、1基于意图辨识的线控汽车紧急转向控制方法摘要:针对线控转向汽车在紧急转向时,按理想转向传动比控制得到的横摆角速度动态响应慢、超调量大、稳定时间长的问题,提出了一种基于驾驶员转向意图辨识的横摆角速度反馈控制方法.该方法在正常转向时,车辆按照理想转向传动比控制;在紧急转向时,在理想转向传动比控制基础上,叠加横摆角速度反馈控制.车辆紧急转向引入驾驶员转向意图辨识环节,以判定何时叠加横摆角速度反馈控制.转向意图辨识利用多维高斯隐马尔可夫模型建模,通过离线训练参数、在线辨识识别的方式实现.实验验证结果表明:该方法能够有效降低线控汽车瞬态转向响应的超调量、减少稳定时间. 关键词:汽车;线控转向;意图辨识;

2、隐马尔可夫模型;反馈控制 中图分类号:U463.4 文献标识码:A 线控转向系统由于取消了转向盘与转向器的机械连接并通过电子控制单元控制转向,使得转向传动比的设计自由度变大,能够实现保证汽车稳态增益不变的理想转向传动比,让汽车驾驶适合于更多的人群,特别是让更多的非职业驾驶员容易掌握汽车动力学特性1.但是,驾驶员在紧急转向时,按照理想转向传动比得到的横摆角速度动态响应无论在响应速度、超调量,还是稳定时间上都不是理想的,通过加入横摆角速度反馈控制则可以降低超调量、缩短稳定时间.横摆角速度反馈控制仅在紧急转向工况下进行叠加,因此,需引入驾驶员转向意图辨识环节,以2此判定何时进行横摆角速度反馈控制.

3、驾驶员转向意图辨识本质上是一个模式识别过程,在此领域主要使用的模式识别方法有模糊模式识别、神经网络模式识别和统计模式识别等.其中,神经网络模式识别方法中神经网络的设计和实现没有理论依据可以借鉴,只能依赖于经验2.结构模式识别方法适合结构性强的模式识别,其抗噪声能力差,计算复杂度高3.统计模式识别有很多具体的方法,进入 21 世纪以来,Bayes 决策理论越来越多地用来解决具体的模式识别问题,并产生了优异的分类性能4.基于 Bayes 决策理论的隐式马尔可夫模型(Hidden Markov Model,简称 HMM) ,由于具有处理时间序列数据的特性,近年来广泛应用于语音识别和驾驶员行为辨识领域

4、中.以HMM 为基础的模式识别方法随着样本的增加,模型会变得越来越好. 鉴于转向驾驶行为的强时间序列性,本文以 HMM 为基础理论,搭建多维高斯 HMM 模型,对模型中的参数进行训练,辨识驾驶员的转向意图,并根据辨识出的转向意图,对车辆进行不同模式的控制:在正常转向时,车辆按照理想转向传动比控制;在紧急转向时,在理想转向传动比控制基础上叠加横摆角速度反馈控制. 1 驾驶员转向意图辨识方法 1.1 隐式马尔科夫模型 隐式马尔科夫包含双重的随机过程,分别是 Markov 链和一般的随机过程.在 HMM 里,状态是不能直接看到的,观察者只能看到基于状态产生的模型输出(观察序列).每一个状态与其可能的

5、观察值之间的关系通过一般的随机过程描述;状态间的转移通过 Markov 链来描述.应用这两个3随机过程,能透过 HMM 产生的观察序列,得到状态时间序列和模型的相关信息. 1.2 多维高斯 HMM 建模及模型参数的训练方法 鉴于 HMM 的处理时序序列的能力和强的统计学基础,本文借助吉林大学的驾驶模拟器采集转向盘转角和转向盘角速度的数据,对数据预处理后,用 BaumWelch 算法对紧急转向、正常转向和直线行驶三个转向驾驶行为 HMM 模型的参数进行优化.然后借助于 NI 公司的 LabVIEW 和驾驶模拟器对转向驾驶行为进行实时的验证.整个过程如图 1 所示. 模型采集的数据都是连续的,为了

6、防止信号量子化造成的信号失真,本文应用多维高斯 HMM 理论来搭建驾驶员转向行为模型:直线行驶、正常转向及紧急转向.这些驾驶员转向行为对应的多维高斯 HMM 模型的模型结构如图 2 所示. 训练数据的采集借助于驾驶模拟器,选定正常转向、紧急转向和直线行驶三个工况,其中正常转向和直线行驶是在驾驶模拟器的一般道路试验场景里完成的,紧急转向是借助于双移线场景完成的.不同年龄的专业驾驶员对应每个工况的多次试验数据构成了整个训练数据集. 对数据集的数据进行滤波处理,将滤波后的数据按辨识长度进行截断、剔除异常数据段之后,借助于 Kmeans 算法确定驾驶员意识上的直线行驶、正常转向和紧急转向的界限值,根据

7、这个界限值对截断后的数据段进行分类,以得到驾驶员直线行驶、正常转向及紧急转向驾驶行为模型的训练数据.编写 MATLAB 程序,结合 HMM 工具箱里的 BaumWelch 算法,训练得出多维高斯 HMM 模型参数. 42 线控汽车紧急转向控制方法 车辆紧急转向时,转向盘输入的速度较大,车辆瞬态转向特性表现较为明显.为了弥补车辆设计时的瞬态转向响应品质的不足,在车辆理想转向传动比控制的基础上,加入横摆角速度反馈叠加转角控制.系统的控制结构如图 3 所示,转向执行器的目标控制转角 d 由 1 和 2 两部分组成.其中,1 是根据理想转向传动比计算得出的,理想传动比 1/G由转向盘转角 sw 和纵向

8、车速 Vx 确定8.2 是横摆角速度反馈控制叠加转角.当辨识驾驶员为正常转向时,横摆角速度叠加转角为 0;当辨识驾驶员为紧急转向时,横摆角速度叠加转角由期望横摆角速度和实际横摆角速度的偏差经过 PID 调节得到. 从控制结构上看,理想传动比是内环控制,它能有效地进行车辆稳定性转向控制;横摆角速度反馈是外环控制,只在特定工况下进行.采用理想传动比控制,可以保证汽车的转向控制算法在全工况内都切实有效.由于实际转向工况复杂,不全是稳态转向,而驾驶员在紧急转向时接近阶跃转向,此时按照理想传动比计算的转向输入横摆角速度动态响应无论从响应速度、超调量,还是稳定时间上都不是理想的,若通过叠加横摆角速度反馈控

9、制,则可提高车辆的瞬态转向品质. 2.1 理想转向传动比设计 线控转向系统转向传动比控制策略设计结合了理想转向传动比和模糊控制转向传动比各自的优点9.当汽车低速和高速行驶时采用模糊控制转向传动比,满足驾驶员低速转向灵敏性和高速转向平稳性的要求.汽车中速行驶时,采用理想转向传动比,保证汽车横摆角速度增益不变,5降低驾驶难度和负担,使驾驶员更容易掌握汽车动力学特性.因此,线控转向系统转向传动比具体设计如下:1) 当车速 020 km/h 时,转向传动比保持为固定值 6;2) 车速在 2030 km/h 时,转向传动比从 6 平稳过渡到理想转向传动比;3) 考虑基于模糊控制的车速在 90 km/h

10、时,模糊控制转向传动比与理想转向传动比较接近,均为 18 左右.因此,选择车速在 3090 km/h 时,采用理想转向传动比;车速为 9095 km/h时采用数据拟合的方法实现传动比向模糊控制转向传动比平滑过渡;车速大于 95 km/h 时,采用模糊控制转向传动比.具体的转向变传动比如图4 所示. 3 实验结果分析 为验证线控转向汽车紧急转向时,叠加横摆角速度反馈控制的有效性,对比了有反馈控制和无反馈控制的实验结果.受实验设备及条件的限制,实验台实验无法给出相同的两次紧急转向输入,因此,先进行了转向盘角阶跃输入工况的软件仿真验证.仿真时,车辆以 80 km/h 的速度行驶,施加如图 5 所示的

11、转向盘转角,图 6 为相应的车速变化曲线. 从图 7 与图 8 的仿真结果可以看出,仅有理想传动比控制的车辆在转向盘阶跃转向 1.2 rad 时,侧向加速度约有 0.35 rad/s 的超调量,横摆角速度约有 0.38 rad/s 的超调量,超调量数值均较大.在添加横摆角速度反馈控制后,侧向加速度的超调量降低了约 0.32 rad/s 的超调量,横摆角速度的超调量降低了约 0.35 rad/s 的超调量.不仅如此,在叠加反馈控制前,汽车瞬态转向的稳定时间约为 1 s,而在叠加反馈控制后,这个时间缩短为 0.4 s 左右.由此可见,叠加反馈控制能保证车辆良好的瞬态转向特性. 6在进行软件仿真后,

12、又在线控转向系统硬件在环实验台上进行了验证.实验选取了两次基本相同的工况来比较验证叠加横摆角速度反馈的必要性.图 9 给出了图 11 的驾驶员转向行为辨识结果,在角阶跃转向开始阶段准确辨识出驾驶员的紧急转向行为.其中,右侧轴线中的 0 表示直线行驶,1 表示正常转向,2 表示紧急转向.在辨识驾驶员紧急转向行为后,叠加横摆角速度反馈控制,降低阶跃转向时的横摆角速度超调量.车速变化如图 10 所示,两次转向盘转角输入分别如图 11 与图 12 所示.由于设计的叠加横摆角速度控制是依据驾驶员转向行为辨识结果决定的,所以在整个转向过程中,先在 616 s 阶段采用转向盘转角连续正弦输入模拟正常的转向操

13、作,再在 16 s25 s 采用转向盘转角阶跃输入模拟紧急转向工况.从图 13 与图 14 的实验结果可以看出,仅理想传动比的横摆角速度的超调量约为 0.3 rad/s,而带反馈控制的横摆角速度曲线基本消除了此超调量.汽车瞬态转向的稳定时间也缩短约 0.5 s. 4 结语 本文以 HMM 为基础理论,搭建多维高斯 HMM 模型,利用吉林大学驾驶模拟器对模型中的参数进行离线训练,达到在线辨识驾驶员转向意图的目的.根据辨识出的驾驶员转向意图,对车辆进行不同模式的控制:在正常转向时,车辆按照理想转向传动比控制;在紧急转向时,在理想转向传动比控制基础上叠加横摆角速度反馈控制.实验结果表明:驾驶员转向意

14、图辨识结果准确,紧急转向时叠加的横摆角速度反馈控制能够有效降低线控汽车瞬态转向响应的超调量、减少稳定时间. 参考文献 71宗长富,李刚,郑宏宇,等.线控汽车底盘控制技术研究进展及展望J.中国公路学报,2013,2:160-176. 2耿冠宏,孙伟,罗培.神经网络模式识别J.软件导刊,2008,7(10):81-83. 3杨合超,宋海歌,周雪梅.模式识别的主要方法及其应用J.电脑知识与技术,2008,S2:156-157. 4卢力,田金文,柳健.统计模式识别研究进展J.军民两用技术与产品,2003,11:39-42. 5HE Lei,ZONG Changfu, WANG Chang.Drivin

15、g intention recognition and behaviour prediction based on a doublelayer hidden Markov modelJ. Journal of Zhejiang University Science C:Computers & Electronics, 2012, 13(3): 208-217. 6VASEGHI S V.State duration modeling in hidden Markov modelsJ.Signal Processing, 1995, 41(1): 31-41. 7宗长富,王畅,何磊,等.基于双层隐式马尔科夫模型的驾驶意图辨识J.汽车工程,2011,33(8):701-706. 8何磊.基于 FlexRay 总线的线控转向系统双电机控制方法研究D.长春:吉林大学汽车工程学院,2011. 9郑宏宇.汽车线控转向路感模拟与主动转向控制策略研究D.长春:吉林大学汽车工程学院,2009.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文资料库 > 学科论文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。