小学数学基础知识整理(一到六年级).docx

上传人:sk****8 文档编号:2224673 上传时间:2019-05-02 格式:DOCX 页数:40 大小:37.20KB
下载 相关 举报
小学数学基础知识整理(一到六年级).docx_第1页
第1页 / 共40页
小学数学基础知识整理(一到六年级).docx_第2页
第2页 / 共40页
小学数学基础知识整理(一到六年级).docx_第3页
第3页 / 共40页
小学数学基础知识整理(一到六年级).docx_第4页
第4页 / 共40页
小学数学基础知识整理(一到六年级).docx_第5页
第5页 / 共40页
点击查看更多>>
资源描述

1、小学数学基础知识整理(一到六年级)总复习小学数学复习资料第一章数和数的运算一 概念(一)整数1 .整数的意义 自然数和 0 都是整数。 2 .自然数 我们在数物体的时候,用来表示物体个数的 1,2 ,3叫做自然数。 一个物体也没有,用 0 表示。 0 也是自然数。 3.计数单位 :一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。 每相邻两个计数单位之间的进率都是 10。这样的计数法叫做十进制计数法。 4. 数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5.数的整除整数 a 除以整数 b(b 0),除得的商是整数而没有余数,我们就说 a 能被 b 整除,或者说b 能

2、整除 a 。 如果数 a 能被数 b(b 0)整除,a 就叫做 b 的倍数,b 就叫做 a 的约数(或 a 的因数)。倍数和约数是相互依存的。因为 35 能被 7 整除,所以 35 是 7 的倍数,7 是 35 的约数。 一个数的约数的个数是有限的,其中最小的约数是 1,最大的约数是它本身。例如: 10 的约数有 1、2 、5 、10,其中最小的约数是 1,最大的约数是 10。一个数的倍数的个数是无限的,其中最小的倍数是它本身。3 的倍数有:3 、6、9、12其中最小的倍数是 3 ,没有最大的倍数。个位上是 0、2、4 、6、8 的数,都能被 2 整除,例如:202、480、304,都能被 2

3、 整除。 个位上是 0 或 5 的数,都能被 5 整除,例如:5 、30 、405 都能被 5 整除。 一个数的各位上的数的和能被 3 整除,这个数就能被 3 整除,例如: 12、108、204 都能被3 整除。一个数各位数上的和能被 9 整除,这个数就能被 9 整除。能被 3 整除的数不一定能被 9 整除,但是能被 9 整除的数一定能被 3 整除。一个数的末两位数能被 4(或 25)整除,这个数就能被 4(或 25)整除。例如:16、 404、1256 都能被 4 整除,50、325、500 、1675 都能被 25 整除。一个数的末三位数能被 8(或 125)整除,这个数就能被 8(或 1

4、25)整除。例如:1168、4600、5000、12344 都能被 8 整除,1125 、13375、5000 都能被 125 整除。 能被 2 整除的数叫做偶数。 不能被 2 整除的数叫做奇数。 0 也是偶数。自然数按能否被 2 整除的特征可分为奇数和偶数。一个数,如果只有 1 和它本身两个约数,这样的数叫做质数(或素数),100 以内的质数有:2、 3、5、7、11、13、17 、19、23、29、31 、37、41、43、47、53 、59、61 、67、71、73、79 、83、89、97。 一个数,如果除了 1 和它本身还有别的约数,这样的数叫做合数,例如 4、6、8 、9、12都是

5、合数。1 不是质数也不是合数,自然数除了 1 外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和 1。 每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如 15=35,3 和 5 叫做 15 的质因数。 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把 28 分解质因数几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如 12 的约数有 1、2、3、4、6 、12;18 的约数有 1、2、3、6、9 、18 。其中,1、 2、3、6 是 12 和 1 8 的公约数,6 是它们

6、的最大公约数。公约数只有 1 的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1 和任何自然数互质。相邻的两个自然数互质。两个不同的质数互质。当合数不是质数的倍数时,这个合数和这个质数互质。两个合数的公约数只有 1 时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。 如果两个数是互质数,它们的最大公约数就是 1。 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如 2 的倍数有 2、4 、6 、8、10、12、14 、16、18 3 的倍数有 3、6 、9、12、15、

7、18 其中 6、12、18 是 2、3 的公倍数,6 是它们的最小公倍数。 如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。 几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。(二)小数1 .小数的意义 把整数 1 平均分成 10 份、100 份、1000 份 得到的十分之几、百分之几、千分之几 可以用小数表示。 一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几 一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边

8、的数叫做小数部分。 在小数里,每相邻两个计数单位之间的进率都是 10。小数部分的最高分数单位 “十分之一”和整数部分的最低单位“一”之间的进率也是 10。 2.小数的分类 纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。 带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 3.1415926 无限不循环小数:一个数的小数部分,数字排列无规

9、律且位数无限,这样的小数叫做无限不循环小数。例如:循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如: 3.555 0.0333 12.109109 一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 的循环节是 “ 9 ” , 0.5454 的循环节是“ 54 ” 。 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 0.5656 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 0.03333 写循环小数的时候,为了简便,小数的循环部分只需写出一个循环

10、节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。例如: 3.777 简写作 0.5302302 简写作 。(三)分数1 .分数的意义 把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。 在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。 把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2. 分数的分类 真分数:分子比分母小的分数叫做真分数。真分数小于 1。 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于 1

11、。 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 3 .约分和通分 把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。 分子分母是互质数的分数,叫做最简分数。 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 (四)百分数1 .表示一个数是另一个数的百分之几的数叫做百分数, 也叫做百分率或百分比。百分数通常用“%“来表示。百分号是表示百分数的符号。 二 方法(一)数的读法和写法 1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的 0 都不读出来,其它数位连续有几个 0都只读一个零

12、。 2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写 0。 3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。 4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。 6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。 7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

13、8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“% ”来表示。 (二)数的改写 一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。 1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。例如把 1254300000 改写成以万做单位的数是 125430 万;改写成以亿做单位的数 12.543 亿。 2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如: 1302490015 省略

14、亿后面的尾数是 13 亿。 3. 四舍五入法:要省略的尾数的最高位上的数是 4 或者比 4 小,就把尾数去掉;如果尾数的最高位上的数是 5 或者比 5 大,就把尾数舍去,并向它的前一位进 1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。 4. 大小比较 1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。 2. 比较小数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十

15、分位上的数也相同的,百分位上的数大的那个数就大 3. 比较分数的大小: 分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。 (三)数的互化 1. 小数化成分数:原来有几位小数,就在 1 的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。 2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。 3. 一个最简分数,如果分母中除了 2 和 5 以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有 2 和 5 以外的质因数,这个分数就不能化

16、成有限小数。 4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。 5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。 7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。 (四)数的整除 1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。 2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数 1 为止,然后把所有的除数连乘

17、求积,这个积就是这几个数的的最大公约数。 3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。 4. 成为互质关系的两个数:1 和任何自然数互质 ;相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有 1 时,这两个合数互质。(五)约分和通分 约分的方法:用分子和分母的公约数(1 除外)去除分子、分母;通常要除到得出最简分数为止。 通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。三 性质

18、和规律(一)商不变的规律 商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。 (二)小数的性质 小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。 (三)小数点位置的移动引起小数大小的变化1. 小数点向右移动一位,原来的数就扩大 10 倍;小数点向右移动两位,原来的数就扩大100 倍;小数点向右移动三位,原来的数就扩大 1000 倍 2. 小数点向左移动一位,原来的数就缩小 10 倍;小数点向左移动两位,原来的数就缩小100 倍;小数点向左移动三位,原来的数就缩小 1000 倍 3. 小数点向左移或者向右移位数不够时,要用“0“补足位。 (四)分数的基本性质 分数

19、的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。 (五)分数与除法的关系1. 被除数除数= 被除数/除数 2. 因为零不能作除数,所以分数的分母不能为零。 3. 被除数相当于分子,除数相当于分母。 四 运算的意义(一)整数四则运算1 整数加法:把两个数合并成一个数的运算叫做加法。 在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。 加数+加数=和 一个加数=和另一个加数 2 整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。 在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分

20、数。 加法和减法互为逆运算。 3 整数乘法:求几个相同加数的和的简便运算叫做乘法。 在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。 在乘法里,0 和任何数相乘都得 0. 1 和任何数相乘都的任何数。 一个因数 一个因数 =积 一个因数= 积另一个因数 4 整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。 在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。 乘法和除法互为逆运算。 在除法里,0 不能做除数。因为 0 和任何数相乘都得 0,所以任何一个数除以 0,均得不到一个确定的商。 被除数除数= 商 除数= 被除数 商 被除数=

21、商除数 (二)小数四则运算1. 小数加法:小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。 2. 小数减法:小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算. 3. 小数乘法:小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几是多少。 4. 小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。 5. 乘方:求几个相同因数的积的运算叫做乘方。例如 3 3 =32 (三)分数四则运算 1. 分数加法:分数加法的意

22、义与整数加法的意义相同。是把两个数合并成一个数的运算。 2. 分数减法:分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。 3. 分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。 4. 乘积是 1 的两个数叫做互为倒数。 5. 分数除法:分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。 (四)运算定律 1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即 a+b=b+a 。 2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数

23、相加它们的和不变,即(a+b)+c=a+(b+c) 。 3. 乘法交换律:两个数相乘,交换因数的位置它们的积不变,即 ab=ba。 4. 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(ab)c=a(bc) 。5. 乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)c=ac+bc 。 6. 减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即 a-b-c=a-(b+c) 。(五)运算法则 1. 整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。 2. 整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。 3. 整数乘法计算法则:

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 教育教学资料库 > 课程笔记

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。