普通高中数学学科核心素养一览表(修改版).doc

上传人:sk****8 文档编号:2256014 上传时间:2019-05-03 格式:DOC 页数:4 大小:82.50KB
下载 相关 举报
普通高中数学学科核心素养一览表(修改版).doc_第1页
第1页 / 共4页
普通高中数学学科核心素养一览表(修改版).doc_第2页
第2页 / 共4页
普通高中数学学科核心素养一览表(修改版).doc_第3页
第3页 / 共4页
普通高中数学学科核心素养一览表(修改版).doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1普通高中数学学科核心素养一览表数学核心素养具体表述 数学核心素养的水平划分水平一1.能够在熟悉的情境中直接抽象出数学概念和规则,能够在特例的基础上归纳并形成简单的数学命题,能够模仿学过的数学方法解决简单问题。2.能够解释数学概念和规则的含义,了解数学命题的条件与结论,能够在熟悉的情境中抽象出数学问题。3.能够了解用数学语言表达的推理和论证;能够在解决相似的问题中感悟数学的通性通法,体会其中的数学思想。4.在交流的过程中,结合实际情境解释相关的抽象概念。水平二1.能够在关联的情境中抽象出一般的数学概念和规则,能够将已知数学命题推广到更一般的情形,能够在新的情境中选择和运用数学方法解决问题。2.

2、能够用恰当的例子解释抽象的数学概念和规则;理解数学命题的条件与结论;能够理解和构建相关数学知识之间的联系。3.能够理解用数学语言表达的概念、规则、推理和论证;能够提炼出解决一类问题的数学方法,理解其中的数学思想。4.在交流的过程中,能够用一般的概念解释具体现象。数学抽象数学抽象是指 舍去事物的一切物理属性,得到数学研究对象的思维过程。主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或者数学术语予以表征。数学抽象是 数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学的产生、发展、应用的过程中

3、。数学抽象使得数学成为高度概括、表达准确、结论一般、有序多级的系统。在数学抽象核心素养的形成过程中 ,积累从具体到抽象的活动经验。学生能更好地理解数学概念、命题、方法和体系,能通过抽象、概括去认识、理解、把握事物的数学本质,能逐渐养成一般性思考问题的习惯,能在其他学科的学习中主动运用数学抽象的思维方式解决问题。水平三1.能够在综合的情境中抽象出数学问题,并用恰当的数学语言予以表达;能够在得到的数学结论基础上形成新命题;能够针对具体问题运用或创造数学方法解决问题。2.能够通过数学对象、运算或关系理解数学的抽象结构,能够理解数学结论的一般性,能够感悟高度概括、有序多级的数学知识体系。3.在现实问题

4、中,能够把握研究对象的数学特征,并用准确的数学语言予以表达;能够感悟通性通法的数学原理和其中蕴含的数学思想。4.在交流的过程中,能够用数学原理解释自然现象和社会现象。水平一1.能够在熟悉的情境中,用归纳或类比的方法,发现数量或图形的性质、数量关系或图形关系。2.能够在熟悉的数学内容中,识别归纳推理、类比推理、演绎推理;知道通过归纳推理、类比推理得到的结论是或然成立的,通过演绎推理得到的结论是必然成立的。能够通过熟悉的例子理解归纳推理、类比推理和演绎推理的基本形式。了解熟悉的数学命题的条件与结论之间的逻辑关系;能够证明简单的数学命题并有条理地表述论证过程。3.能够了解熟悉的概念、定理之间的逻辑关

5、系。4.能够在交流过程中,明确所讨论问题的内涵,有条理地表达观点。逻辑推理逻辑推理是指 从一些事实和命题出发,依据逻辑规则推出一个命题的思维过程。主要包括两类:一类是从特殊到一般的推理,推理形式主要有归纳、类比;一类是从一般到特殊的推理,推理形式主要有演绎。逻辑推理是 得到数学结论、构建数学体系的重要方式,是数学严谨性的基本保证,是人们在数学活动中进行交流的基本思维品质。在逻辑推理核心素养的形成过程中 ,学生能够发现水平1.能够在关联的情境中,发现并提出数学问题,用数学语言予以表达;能够理解归纳、类比是发现和提出数学命题的重要途径。2.能够对与学过的知识有关联的数学命题,通过对条件与结论的分析

6、,探索论证的思路,选择合适的论证方法予以证明,并能用准确的数学语言表述论证过程;能够通过举反例说明某些数学结论不成立。2二 3.能够理解相关概念、命题、定理之间的逻辑关系,初步建立网状的知识结构。4.能够在交流的过程中,始终围绕主题,观点明确,论述有理有据。问题和提出命题;能掌握推理的基本形式,表述论证的过程;能理解数学知识之间的联系,建构知识框架;形成有论据、有条理、合乎逻辑的思维品质,增强数学交流能力。 水平三1.能够在综合的情境中,用数学的眼光找到合适的研究对象,提出有意义的数学问题。2.能够掌握常用逻辑推理方法的规则,理解其中所蕴含的思想。对于新的数学问题,能够提出不同的假设前提,推断

7、结论,形成数学命题。对于较复杂的数学问题,通过构建过渡性命题,探索论证的途径,解决问题,并会用严谨的数学语言表达论证过程。3.能够理解建构数学体系的公理化思想。4.能够合理地运用数学语言和思维进行跨学科的表达与交流。水平一1.了解熟悉的数学模型的实际背景及其数学描述,了解数学模型中的参数、结论的实际含义。2.知道数学建模的过程包括:提出问题、建立模型、求解模型、检验结果、完善模型。能够在熟悉的实际情境中,模仿学过的数学建模过程解决问题。3.对于学过的数学模型,能够举例说明建模的意义,体会其蕴含的数学思想;感悟数学表达对数学建模的重要性。4.在交流的过程中,能够借助或引用已有数学建模的结果说明问

8、题。水平二1.能够在熟悉的情境中,发现问题并转化为数学问题,知道数学问题的价值与作用。2.能够选择合适的数学模型表达所要解决的数学问题;理解模型中参数的意义,知道如何确定参数,建立模型,求解模型;能够根据问题的实际意义检验结果,完善模型,解决问题。3.能够在关联的情境中,经历数学建模的过程,理解数学建模的意义;能够运用数学语言,表述数学建模过程中的问题以及解决问题的过程和结果,形成研究报告,展示研究成果。4.在交流的过程中,能够用模型的思想说明问题。数学建模数学建模是 对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程。主要包括:在实际情境中从数学的视角发现问题

9、、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题。数学模型构建了 数学与外部世界的桥梁,是数学应用的重要形式。数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力。在数学建模核心素养的形成过程中 ,积累用数学解决实际问题的经验。学生能够在实际情境中发现和提出问题;能够针对问题建立数学模型;能够运用数学知识求解模型,并尝试基于现实背景验证模型和完善模型;能够提升应用能力,增强创新意识。水平三1.能够在综合的情境中,运用数学思维进行分析,发现情境中的数学关系,提出数学问题。2.能够运用数学建模的一般方法和相关知识,创造性地建立数学模型,解决问题。3.能够理

10、解数学建模的意义和作用;能够运用数学语言,清晰、准确地表达数学建模的过程和结果。4.在交流的过程中,能够通过数学建模的结论和思想阐释科学规律和社会现象。水平一1.能够在熟悉的情境中,建立实物的几何图形,能够建立简单图形与实物之间的联系;体会图形与图形、图形与数量的关系。2.能够在熟悉的数学情境中,借助图形的性质和变换(平移、对称、旋转)发现数学规律;能够描述简单图形的位置关系和度量关系及其特有性质。3.能够通过图形直观认识数学问题;能够用图形描述和表达熟悉的数学问题、启迪解决这些问题的思路,体会数形结合。4.能够在日常生活中利用图形直观进行交流。直观想象直观想象是指 借助几何直观和空间想象感知

11、事物的形态与变化,利用图形理解和解决数学问题的过程。主要包括:借助空间认识事物的位置关系、形态变化与运动规律;利用图形描述、分析数学问题;建立形与数的联系;构建数学问题的直观模型,探索解决问题的思路。直观想象是 发现和提出数学问题、分析和解决数学问题的重要手段,是探索和形成论证思路、进行逻水平1.能够在关联的情境中,想象并构建相应的几何图形;借助图形提出数学问题,发现图形与图形、图形与数量的关系,探索图形的运动规律。2.能够掌握研究图形与图形、图形与数量之间关系的基本方法,能够借助图形性质探索数学规律,解决实际问题或数学问题。3.能够通过直观想象提出数学问题;能够用图形探索解决问题的思路;能够

12、形成数形结合的思想,体会几何直观的作用和意义。3二 4.在交流的过程中,能够利用直观想象探讨数学问题。辑推理、构建抽象结构的思维基础。在直观想象核心素养的形成过程中 ,学生能够进一步发展几何直观和空间想象能力,增强运用图形和空间想象思考问题的意识,提升数形结合的能力,感悟事物的本质,培养创新思维。水平三1.能够在综合的情境中,借助图形,通过直观想象提出数学问题。2.能够综合利用图形与图形、图形与数量的关系,理解数学各分支之间的联系;能够借助直观想象建立数学与其他学科的联系,并形成理论体系的直观模型。3.能够通过想象对复杂的数学问题进行直观表达,反映数学问题的本质,形成解决问题的思路。4.在交流

13、的过程中,能够利用直观想象探讨问题的本质及其与数学的联系。水平一1.能够在熟悉的数学情境中了解运算对象,提出运算问题。2.能够了解运算法则及其适用范围,正确进行运算;能够在熟悉的数学情境中,根据问题的特征建立合适的运算思路,解决问题。3.在运算过程中,能够体会运算法则的意义和作用,能够运用运算验证简单的数学结论。4.在交流的过程中,能够用运算的结果说明问题。水平二1.能够在关联的情境中确定运算对象,提出运算问题。2.能够针对运算问题,合理选择运算方法、设计运算程序,解决问题。3.能够理解运算是一种演绎推理;能够在综合运用运算方法解决问题的过程中,体会程序化思想的意义和作用。4.在交流的过程中,

14、能够借助运算探讨问题。数学运算数学运算是指 在明晰运算对象的基础上,依据运算法则解决数学问题的过程。主要包括:理解运算对象,掌握运算法则,探究运算方向,选择运算方法,设计运算程序,求得运算结果等。数学运算是 数学活动的基本形式,也是演绎推理的一种形式,是得到数学结果的重要手段。数学运算是计算机解决问题的基础。在数学运算核心素养的形成过程中 ,学生能够进一步发展数学运算能力;能有效借助运算方法解决实际问题;能够通过运算促进数学思维发展,养成程序化思考问题的习惯;形成一丝不苟、严谨求实的科学精神。水平三1.在综合的情境中,能把问题转化为运算问题,确定运算对象和运算法则,明确运算方向。2.能够对运算

15、问题,构造运算程序,解决问题。3.能够用程序化的思想理解与表达问题,理解程序化与计算机解决问题的联系。4.在交流的过程中,能够用程式化思想理解和解释问题。水平一1.能够在熟悉的情境中了解随机现象及简单的统计或概率问题。 2.能够对熟悉的概率问题,选择合适的概率模型,解决问题;能够对熟悉的统计问题,选择合适的抽样方法收集数据,掌握描述、刻画、分析数据的基本统计方法,解决问题。 3.能够结合熟悉的实例,体会概率是对随机现象发生可能性大小的度量,可以通过定义的方法得到,也可以通过统计的方法进行估计;能够用统计和概率的语言表达简单的随机现象。 4.在交流的过程中,能够用统计图表和简单概率模型解释熟悉的

16、随机现象。数据分析数据分析是指 针对研究对象获得相关数据,运用统计方法对数据中的有用信息进行分析和推断,形成知识的过程。主要包括:收集数据,整理数据,提取信息,构建模型对信息进行分析、推断,获得结论。数据分析是 大数据时代数学应用的主要方法,已经深入到现代社会生活和科学研究的各个方面。在数据分析核心素养的形成过程中 ,学生能够提升数据处理的能力,增强基于数据表达现实问题的意识,养成通过数据思考问题的习惯,积累依托数据水平二1.能够在关联的情境中,识别随机现象,知道随机现象与随机变量之间的关联,发现并提出统计或概率问题。 2.能够针对具体问题,选择离散型随机变量或连续型随机变量刻画随机现象,理解

17、抽样方法的统计意义,能够运用适当的统计或概率模型解决问题。 3.能够在运用统计方法解决问题的过程中,感悟归纳推理的思想,理解统计结论的意义;能够用统计或概率的思维来分析随机现象,用统计或概率模型表达随机现象的统计规律。 4.在交流的过程中,能够用数据呈现的规律解释随机现象。4探索事物本质、关联和规律的活动经验。水平三1.能够在综合的情境中,发现并提出随机问题。2.能够针对不同的问题,综合或创造性地运用统计概率知识,构造相应的统计或概率模型,解决问题;能够分析随机现象的本质,发现随机现象的统计规律,形成新的知识。3.能够理解数据分析在大数据时代的重要性。能够理解数据蕴含着信息,可以通过对信息的加工,得到数据所提供的知识和规律,并用统计或概率的语言予以表达。4.在交流的过程中,能够辨明随机现象,并运用恰当的语言进行表述。

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 教育教学资料库 > 课程笔记

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。