1、有关弹簧的题目在高考中几乎年年出现,由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高.在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能、冲量和动量等多个物理概念和规律,所以弹簧试题也就成为高考中的重、难、热点,一、 “轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧” ,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限
2、大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为 ,另一端受力一定也为 ,若是弹簧秤,则弹簧秤示数为 .FFF【例 1】如图 3-7-1 所示,一个弹簧秤放在光滑的水平面上,外壳质量 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向m的力 和称外壳上的力 ,且 ,则弹簧秤沿水平方向的1F212加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: ,即12Fma12F仅以轻质弹簧为研究对象,则弹簧两端的受力都 ,所以弹簧秤的读数为 .1 1说明: 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提2F供的.【答案】 1
3、2am1F二、质量不可忽略的弹簧【例 2】如图 3-7-2 所示,一质量为 、长为 的均质弹ML簧平放在光滑的水平面,在弹簧右端施加一水平力 使弹簧F向右做加速运动.试分析弹簧上各部分的受力情况.【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度 ,取弹簧左部任意长度 为研究对象,设其质量为 得弹簧上的弹力FaMxm为: xxTmL【答案】 F三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与
4、弹簧相比较,轻绳和轻杆的弹力可以突变.【例 3】如图 3-7-3 所示,木块 与 用轻弹簧相连,竖直放在木块 上,三ABC者静置于地面, 的质量之比是 1:2:3.设所有接触面都光滑,当沿水ABC、 、平方向迅速抽出木块 的瞬时,木块 和 的加速度分别是 = 与 = AaBa【解析】由题意可设 的质量分别为 ,以木块 为研究对象,、 、 23m、 、抽出木块 前,木块 受到重力和弹力一对平衡力,抽出木块 的瞬时,木块 受到重力和弹力的大小和方向均不变,故木块 的瞬时加速度为 0.以木A块 为研究对象,由平衡条件可知,木块 对木块 的作用力 .B、 CB3CBFmg以木块 为研究对象,木块 受到
5、重力、弹力和 三力平衡,抽出木块 的瞬时,木B块 受到重力和弹力的大小和方向均不变, 瞬时变为 0,故木块 的瞬时合外力为 ,竖F3g直向下,瞬时加速度为 .15g图 3-7-2图 3-7-1图 3-7-3高中物理中的弹簧问题归类剖析【答案】0 说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例 4】如图 3-7-4 所示,质量为 的小球用水平弹簧连接,并m用倾角为 的光滑木板 托住,使小球恰好处于静止状态.当03AB突然向下撤离的瞬间,小球的加速度为 ( )ABA. B.大小为 ,方向竖直向下23gC.大小为 ,方向垂直于木板向下D. 大小为 , 方向水平向右23g【解析】 末撤离木板前,
6、小球受重力 、弹簧拉力 、木板支持力GF作用而平衡,如图 3-7-5 所示,有 .NFcosNmgF撤离木板的瞬间,重力 和弹力 保持不变(弹簧弹力不能突变),而木板支持力 立即消失,小球所受 和 的合力大小等于撤之前的N(三力平衡),方向与 相反,故加速度方向为垂直木板向下,大NN小为 23cosFgam【答案】 C.四、弹簧长度的变化问题设劲度系数为 的弹簧受到的压力为 时压缩量为 ,弹簧受到的拉力为 时伸长k1F1x2F量为 ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力 变为拉力 ,弹簧长度将2x F由压缩量 变为伸长量 ,长度增加量为 .由胡克定律有: , .12x12x11()k
7、x2k则: ,即221()()Fkk说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时 表示的物理意义是弹簧长度的改变量,并不是形变量.【例 5】如图 3-7-6 所示,劲度系数为 的轻质弹簧两端分别与质量为1k、 的物块 1、2 拴接,劲度系数为 的轻质弹簧上端与物块 2 拴接,1m2 2下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块 1 缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块 2 的重力势能增加了 ,物块 1 的重力势能增加了 .【解析】由题意可知,弹簧 长度的增加量就是物块 2 的高度增加量,2k弹簧 长度的增加量与弹簧 长度的增加量之和就
8、是物块 1 的高度增加2k1量.由物体的受力平衡可知,弹簧 的弹力将由原来的压力 变为 0,弹簧 的弹力2k12()mg1k将由原来的压力 变为拉力 ,弹力的改变量也为 .所以 、 弹簧的伸长1mgg 12量分别为: 和2()k122()故物块 2 的重力势能增加了 ,物块 1 的重力势能增加了2mk2112()()mgk【答案】 2122112()()gk图 3-7-4图 3-7-5图 3-7-6五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律 ,其中 为弹簧的形变量,两端与物体相连时 亦即物Fkx x体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例 6】如图 3-7-7 所示,
9、在倾角为 的光滑斜面上有两个用轻质弹簧相连接的物块 ,其质量分别为 ,弹簧的劲度系AB、 ABm、数为 , 为一固定挡板,系统处于静止状态,现开始用一恒力kC沿斜面方向拉 使之向上运动,求 刚要离开 时 的加速度F C和从开始到此时 的位移 (重力加速度为 ).adg【解析】 系统静止时,设弹簧压缩量为 ,弹簧弹力为 ,分析1x1F受力可知:A1sinAkxmg解得: 1sinAgx在恒力 作用下物体 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体 刚要F B离开挡板 时弹簧的伸长量为 ,分析物体 的受力有: ,解得C2xB2sinBkxmg2sinBmgxk设此时物体 的加速度为 ,由牛
10、顿第二定律有 :Aa 2siAAFa解得: ()sinBFga因物体 与弹簧连在一起,弹簧长度的改变量代表物体 的位移,故有 ,即12dx()siABmdk【答案】 ng六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性x势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,往往能达到事半功倍的效果.此时要先确定
11、物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为 的物体 用一轻弹簧与下方地面上质量mA也为 的物体 相连,开始时 和 均处于静止状态,此时弹簧压缩量为mBB,一条不可伸长的轻绳绕过轻滑轮,一端连接物体 、另一端 握在手0x C中,各段绳均刚好处于伸直状态,物体 上方的一段绳子沿竖直方向且足够长.现在 端施加水平恒力 使物体 从静止开始向上运动.(整个过程弹CF簧始终处在弹性限度以内). (1)如果在 端所施加的恒力大小为 ,则在物体 刚要离开地面时物体3mgB
12、的速度为多大?A(2)若将物体 的质量增加到 ,为了保证运动中物体 始终不离开地面,则 最大不超B2 F过多少?图 3-7-7图 3-7-8【解析】 由题意可知,弹簧开始的压缩量 ,0mgxk物体 刚要离开地面时弹簧的伸长量也是 .B(1)若 ,在弹簧伸长到 时,物体 离开地面,此时弹簧弹性势能与施力前相等,3Fmg0xB所做的功等于物体 增加的动能及重力势能的和.A即: 得: 2012xv02gx(2)所施加的力为恒力 时,物体 不离开地面,类比竖直弹簧振子,物体 在竖直方向F A上除了受变化的弹力外,再受到恒定的重力和拉力.故物体 做简谐运动.A在最低点有: ,式中 为弹簧劲度系数, 为在
13、最低点物体 的加速度.001mgkxak1a在最高点,物体 恰好不离开地面,此时弹簧被拉伸,伸长量为 ,则: B 02x002(2)kx而 ,简谐运动在上、下振幅处 ,解得:12a03gF也可以利用简谐运动的平衡位置求恒定拉力 .物体 做简谐运动的最低点压缩量为 ,0FA0x最高点伸长量为 ,则上下运动中点为平衡位置,即伸长量为所在处.由 ,解02x 2mgkF得: .03mgF【答案】 02x2说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关.七与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中
14、经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论.【例 8】如图 3-7-9 所示, 两木块叠放在竖直轻弹簧上,已知木块 的质量分别AB、 AB、为 和 ,弹簧的劲度系数 ,若在 上作用一个竖直向上的力 ,使0.42kg.010/kNmAF由静止开始以 的加速度竖直向上做匀加速运动( )求: A25/ms 210/gms(1) 使木块 竖直做匀加速运动的过程中,力 的最大值; F(2)若木块由静止开始做匀加速运动,直到 分离的过程中,弹簧的弹性势能减少
15、了B、,求这一过程中 对木块做的功.0.248JF【解析】 此题难点在于能否确定两物体分离的临界点.当 (即不加竖直向上0力)时,设木块 叠放在弹簧上处于平衡时弹簧的压缩量为 ,有: FAB、 x,即 ()ABkxmg()Bmgxk对木块 施加力 , 、 受力如图 3-7-10 所示,对木块 有: FANa对木块 有: BkxNga可知,当 时,木块 加速度相同,由式知欲使木块 匀加速运动,随 减小0A、 N增大,当 时, 取得了最大值 ,即: FmF()4.1Aag又当 时, 开始分离,由式知,弹簧压缩量 ,则、 ()Bkxm()Bmagxk图 3-7-10图 3-7-9木块 、 的共同速度
16、: AB2()vax由题知,此过程弹性势能减少了 0.248PWEJ设 力所做的功为 ,对这一过程应用功能原理,得: FF21()()(ABABPWmvmgx联立式,且 ,得:0.48PEJ29.64FJ【答案】 (1) .1mN29.610FW【例 9】如图 3-7-11 所示,一质量为 的塑料球形容器,在 处与水平面接触.它的内部MA有一直立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为 的小球在m竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度.在振动过程中球形容器对桌面的最小压力为 0,求小球振动的最大加速度和容器对桌面的最大压力.【解析】 因为
17、弹簧正好在原长时小球恰好速度最大,所以有: qEg小球在最高点时容器对桌面的压力最小,有: kxMg此时小球受力如图 3-7-12 所示,所受合力为 mF由以上三式得小球的加速度 .ga显然,在最低点容器对桌面的压力最大,由振动的对称性可知小球在最低点和最高点有相同的加速度,解以上式子得: Mkx所以容器对桌面的压力为: .MgkxFN2【答案】 gm2八、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储存一定的弹性势能,因此弹簧的弹性势能可以与机械能守恒规律综合应用,我们用公式 计算弹簧势能,弹簧在相等形变量时所具有的弹性势能相21PEkx等一般是考试热点.弹簧弹力做功等于弹性势能的减少量.
18、弹簧的弹力做功是变力做功,一般可以用以下四种方法求解:(1)因该变力为线性变化,可以先求平均力,再用功的定义进行计算;(2)利用 图线所包围的面积大小求解;Fx(3)用微元法计算每一小段位移做功,再累加求和;(4)根据动能定理、能量转化和守恒定律求解.由于弹性势能仅与弹性形变量有关,弹性势能的公式高考中不作定量要求,因此,在求弹力做功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解.特别是涉及两个物理过程中的弹簧形变量相等时,往往弹性势能的改变可以抵消或替代求解.【例 10】如图 3-7-13 所示,挡板 固定在足够高的水平桌面上,P物块 和 大小可忽略,它们分别带有 和 的电荷量,质A
19、BAQB量分别为 和 .两物块由绝缘的轻弹簧相连,一个不可伸长的m轻绳跨过滑轮,一端与 连接,另一端连接轻质小钩.整个装置处于场强为 、方向水平向左的匀强电场中, 、 开始时静止,已知弹簧的劲度系数为E,不计一切摩擦及 、 间的库仑力 , 、 所带电荷量保持不变, 不会碰到滑轮. kB B(1)若在小钩上挂质量为 的物块 并由静止释放,可使物块 对挡板 的压力恰为零,MCAP图 3-7-13图 3-7-11图 3-7-12但不会离开 ,求物块 下降的最大距离 .PCh(2)若 的质量为 ,则当 刚离开挡板 时, 的速度多大?2MAPB【解析】 通过物理过程的分析可知,当物块 刚离开挡板 时,弹
20、力恰好与 所受电场APA力平衡,弹簧伸长量一定,前后两次改变物块 质量,在第(2)问对应的物理过程中,弹簧C长度的变化及弹性势能的改变相同,可以替代求解.设开始时弹簧压缩量为 ,由平衡条件 ,可得 1x1BkxQE1BExk设当 刚离开挡板时弹簧的伸长量为 ,由 ,可得: A22A2AQ故 下降的最大距离为: C1hx由三式可得: ()ABEQk(2)由能量守恒定律可知,物块 下落过程中, 重力势能的减少量等于物块 电势能的CCB增量和弹簧弹性势能的增量以及系统动能的增量之和.当 的质量为 时,有: CMBgHhE弹当 的质量为 时,设 刚离开挡板时 的速度为 ,则有:2Av212()BgHQ
21、Ehmv弹由三式可得 刚离开 时 的速度为:P()ABvk【答案】 (1) (2)()ABEh()2ABMgEQvkm【例 11】如图 3-7-14 所示,质量为 的物体 经一轻质弹簧与下方地面上1的质量为 的物体 相连,弹簧的劲度系数为 ,物体 都处于静止状态.一2m、不可伸长的轻绳一端绕过轻滑轮连接物体 ,另一端连接一轻挂钩.开始时各段绳都处于伸直状态,物体 上方的一段绳沿竖直方向.现给挂钩挂一质量为 的物体 并从静止释放,已知它恰好能使物体 离开地面但不继续上2CB升.若将物体 换成另一质量为 的物体 ,仍从上述初始位置由静止12()mD释放,则这次物体 刚离地时物体 的速度大小是多少?
22、已知重力加速度为Bg【解析】 开始时物体 静止,设弹簧压缩量为 ,则有:A、 1x1kxmg悬挂物体 并释放后,物体 向下、物体 向上运动,设物体 刚要离地时弹簧伸长量为CCAB,有2x2kmg不再上升表明此时物体 的速度均为零,物体 己下降到其最低点,与初状态相比,B、 C由机械能守恒得弹簧弹性势能的增加量为: 21212()()Exx物体 换成物体 后,物体 离地时弹簧势能的增量与前一次相同,由能量关系得:DB联立上式解得题中所求速度为:21121212()()()()mvmgmgxE21()k【答案】21()gv说明: 研究对象的选择、物理过程的分析、临界条件的应用、能量转化守恒的结合往
23、往在一些题目中需要综合使用.图 3-7-14九、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.【例 12】如图 3-7-15 所示,质量为 的质点与三根相同的轻弹簧相连,m静止时相邻两弹簧间的夹角均为 ,已知弹簧 对质点的作用力均012ab、为 ,则弹簧 对质点作用力的大小可能为 ( )FcA、 B、 0FgC、 D、mg【解析】 由于两弹簧间的夹角均为 ,弹簧 对质点作用力的合012ab、力仍为 ,弹簧 对质点有可能是拉力,也有可能是推力,因 与 的大小关系不确定,ab、 Fmg故上述四个选项均有可能.正确答案:
24、ABCD【答案】 ABCD十、弹簧振子弹簧振子的位移、速度、加速度、动能和弹性势能之间存在着特殊关系,弹簧振子类问题通常就是考查这些关系,各物理量的周期性变化也是考查的重点.【例 13】如图 3-7-16 所示,一轻弹簧与一物体组成弹簧振子,物体在同一竖直线上的间做简谐运动, 点为平衡位置 ; 为 的中点,已知 ,AB、 OCAOCh弹簧振子周期为 ,某时刻弹簧振子恰好经过 点并向上运动 ,则从此时刻T开始计时,下列说法中正确的是 ( )A、 时刻,振子回到 点4tCB、 时间内,振子运动的路程为24hC、 时刻,振子的振动位移为38Tt 0D、 时刻,振子的振动速度方向向下【解析】 振子在点
25、 间的平均速度小于在点 间的平均速度,时间大于 ,选项AC、 CO、 8T错误;经 振子运动 点以下与点 对称的位置,总路程为 ,选项 正确;经AC、 2TO4hB振子在点 间向下运动,选项 D 正确.38tB、【答案】 B D十一、弹簧串、并联组合弹簧串联或并联后劲度系数会发生变化,弹簧组合的劲度系数可以用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特点要掌握:弹簧串联时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.【例 14】 如图 3-7-17 所示,两个劲度系数分别为 的轻弹簧竖直悬挂,12k、下端用光滑细绳连接,并有一光滑的轻滑轮放在细线上;滑轮下端挂一
26、重为的物体后滑轮下降,求滑轮静止后重物下降的距离.G【解析】 两弹簧从形式上看似乎是并联,但因每根弹簧的弹力相等,故两弹簧实为串联;两弹簧的弹力均 ,可得两弹簧的伸长量分别为 ,2G12Gxk,两弹簧伸长量之和 ,故重物下降的高度为: 2xk12x 12()4h【答案】 12()4G十二、通电的弹簧图 3-7-17图 3-7-18图 3-7-16图 3-7-15【例 15】如图 3-7-18 所示装置中,将金属弹簧的上端固定,下端恰好浸入水银,水银与电源负极相连,弹簧上端通过开关 与电源正极相连.当接通开关 后,弹簧的运动情况如SS何?【解析】 通电弹簧相邻两匝线圈相互平行且电流同向,两匝线圈
27、相互吸引,从而使弹簧收缩;弹簧收缩后下端离开水银,切断了电流吸引力消失,弹簧又向下恢复原长,与水银面接触而接通电路,然后又在吸引力作用下收缩.如此反复,弹簧就不断地上下振动.十三、物体沿弹簧螺旋运动【例 16】如图 3-7-19 所示,长度为 的光滑钢丝绕成高度为 的弹簧,将LH弹簧竖直放置.一中间有孔的小球穿过钢丝并从弹簧的最高点 由静止释放,A求经多长时间小球沿弹簧滑到最低点 .B【解析】 小球沿光滑弹簧下滑时机械能守恒,可以假想在不改变弹簧上各处倾角的条件下将弹簧拉成一条倾斜直线,如图 3-7-20 所示,小球沿此直线下滑的时间与题中要求的时间相等.小球沿直线下滑的加速度为 sinag由
28、几何知识可得: ;由位移公式可知: ,联立上式解得:sinHL21Lat2tLgH【答案】十四、生产和生活中的弹簧弹簧在生产和生活中有着广泛的应用,近几年高考中也出现了不少有关弹簧应用方面的试题.【例 17】如图 3-7-21 所示表示某同学在科技活动中自制的电子秤原理,利用电压表示数来指示物体质量,托盘与电阻可忽略的弹簧相连,托盘与弹簧的质量均不计,滑动变阻器的滑动头与弹簧上端连接;当托盘中没放物体且 闭合时,电压表示数为零 .设变阻器的总S电阻为 、总长度为 ,电源电动势为 、内阻为 ,限流电阻阻值为RLEr,弹簧劲度系数为 ,不计一切摩擦和其他阻力.0k(1)推导出电压表示数 与所称物体质量 的关系式.xUm(2)由(1)结果可知,电压表示数与待测物体质量不成正比、不便于进行刻度.为使电压表示数与待测物体质量成正比,请利用原有器材进行改进并完成电路原理图,推导出电压表示数 与待测物体质量 的关xUm系式.【解析】(1)设变阻器上端至滑动头的长度为 ,据题意得: ,gkx,xRL0xxRUEr解得: ()xmgk(2)改进后的电路如图 3-7-22 所示,则有: ,mgkx,解得: xRL图 3-7-20图 3-7-21图 3-7-19图 3-7-220()xmgREUkLr【答案】 (1) 0()xgREkLr(2) x