金属注射成形技术的现状和发展动向.docx

上传人:hw****26 文档编号:3013090 上传时间:2019-05-17 格式:DOCX 页数:9 大小:28.70KB
下载 相关 举报
金属注射成形技术的现状和发展动向.docx_第1页
第1页 / 共9页
金属注射成形技术的现状和发展动向.docx_第2页
第2页 / 共9页
金属注射成形技术的现状和发展动向.docx_第3页
第3页 / 共9页
金属注射成形技术的现状和发展动向.docx_第4页
第4页 / 共9页
金属注射成形技术的现状和发展动向.docx_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、金属注射成形技术的现状和发展动向金属注射成形(Metal Injection Molding,简称 MIM)是一种从塑料注射成形行业中引伸出来的新型粉末冶金近净成形技术,众所周知,塑料注射成形技术低廉的价格生产各种复杂形状的制品,但塑料制品强度不高,为了改善其性能,可以在塑料中添加金属或陶瓷粉末以得到强度较高、耐磨性好的制品,近年来,这一想法已发展演变为最大限度地提高固体粒子的含量并且在随后的烧结过程中完全除去粘结剂并使成形坯致密化。这种新的粉末冶金成形方法称为金属注射成形。金属注射成形的基本工艺步骤是:首先是选取符合 MIM要求的金属粉末和粘结剂,然后在一定温度下采用适当的方法将粉末和粘结剂

2、混合成均匀的喂料,经制粒后在注射成形,获得的成形坯经过脱脂处理后烧结致密化成为最终成品。1.MIM粉末及制粉技术MIM对原料粉末要求较高,粉末的选择要有利于混炼、注射成形、脱脂和烧结,而这往往是相互矛盾的,对 MIM原料粉末的研究包括:粉末形状、粒度和粒度组成、比表面等,表 1中列出了最适合于 MIM用的原料粉末的性质。表 1 MIM最佳原料粉末性质粒度/um 2-8粒度组成 较宽或较窄松装密度/% 40-45摇实密度/% 50以上粉末形状 近球形粉末长径比 1.2-1.5堆集集休止角 50-60由于 MIM原料粉末要求很细,MIM 原料粉末价格一般较高,有的甚至达到传统 PM粉末价格的 10

3、倍,这是目前限制 MIM技术广泛应用的一个关键因素,目前生产 MIM用原料粉末的方法主要有羰基法、超高压水雾化法、高压气体雾化法等。1.1羰基法MIM 最早使用的粉末是羰基法生产的,美国 GAF化学公司采用较粗的海绵铁粉作原料,制粒后在 350度氢气中退火活化,然后置于反应器中,铁粒暴露在循环的 CO中,气体压力为6OPMa,温度 160度,铁与 CO发生反应,得到气态的 Fe(CO)5,并加以冷凝收集,接下来,使Fe(CO)5蒸发通过一个垂直的反应塔,反应塔加热到 300度,在催化剂 NH3作用下,Fe(CO)5在塔顶部分解为 Fe和 CO气体,将沉积的铁粉聚集体球磨,得到符合要求的成品铁粉

4、,粉中一般含 0.8%C,0.7%N 和 0.3%O(质量分数) 。羰基法是一种较为成熟的制备 MIM用粉末的方法,所制得的粉末呈球形,粒度小,但是羰基法只能生产有限的几种粉末(如铁粉、镍粉) ,不易生产包含 2种以上元素的合金粉,而且羰基法生产过程毒性大,在 MIM生产过程中还存在碳含量控制的问题。1.2超高压水雾化法日本的 PAMCO,Kawasaki Steel,Kawasaki Steel几家公司发展了一种超高压水雾化,该法能够较为经济地大量生产 MIM用金属和合金粉末。其中以 PAMCO公司产量最大,工艺也最有代表性。该公司年产 MIM用粉末 300t采用 150MPa高压水雾化,其

5、主要产品为各种不锈钢粉和低合金钢粉,PAMCO 从 20世纪 80年代中期开始商业生产 MIM粉,针对水雾化粉摇实密度低,导致注射成形时填充密度低而需要较多的粘结剂的缺点,在增加粉末的球化率,提高其摇实密度方面作了许多改进,改进后的 PAMCO新型 MIM粉的摇实密度比常规 MIM水雾化粉的摇实密度提高了 10%,采用具有较高摇实密度的粉末,PAMCO 已经成功地将所需粘结剂减少了 20%左右。1.3采用改进型喷嘴的高压气体雾化法气体雾化法生产的粉末摇实密度高,流动性好,所需添加剂量少,且用惰性气体,所得粉末的残留气体含量比水雾化粉至少低一个数量级,但是一般气体雾化粉颗粒较粗,约为40-50u

6、m,能适应 MIM要求的细粉量很少,英国 Osprey公司和 PSI公司为此对喷嘴进行改进,采用高压气体雾化,使得适合 MIM用的细粉产出率大大提高。Osprey 公司用高压氩气和氮气(压力为 5PMa)生产的不锈钢粉末中有 75%的粉末粒度小于 20um,大大高于常规气雾化法的20%,其平均粒度为 14um,该公司还用该法生产了高速钢粉、工具钢粉以及磁性合金粉等。据 Osprey公司称,这种高压气雾化 MIM粉价格主要取决于生产规模大小,在大规模生产的情况下,该法生产的粉末价格甚至可以与高压水雾化法抗衡。 1.4微雾化法美国 Micro Materials Technology和 GTE P

7、roducts公司报道了他们采用微雾化法制备MIM用细粉的情况。据称,该法是一种有效制备小于 20um 粉末的生产方法,其原理是基于金属液滴撞击不浸润的基片而发生破碎。原料为普通雾化法生产的较粗粉末(50-150um) ,利用等离子喷枪熔化原料粉末并加速熔融金属液滴,被加速的金属液滴撞击不浸润的旋转基盘而产生破碎,破碎的细小液滴球化,并迅速冷却成细小粉末。 微雾化法是一种将较粗粉末有效地处理成细粉的新工艺,有以下优点:无容器熔化而大大减少了粉末污染;由于高的等离子气体的温度,没有熔点限制,可以方便地制造各种难熔金属和合金粉末;不需要常规的庞大的炉子装置,节约能源。另外,美国 Ultra Fin

8、e Powder Technology公司开发了一种 Tandem雾化装置,它的基本原理是在雾化之前,将一定压力的气体注入金属熔体中,这样,雾化后每一金属液滴内都包含有气体。在冷却过程中,液滴内部气体压力增大,金属液滴产生破碎而得到超细球形粉末。1.5 Nanoval层流雾化法德国 Nanoval 公司开发出了一种独特的气雾化技术,基本思路是应用自稳定的、严格成层状的气流,使熔化的金属平行流动。熔化了的金属从拉瓦尔喷嘴的入口到最窄处被气体压缩而迅速加速(从几 m/s 到音速) ,气体为获得稳定而呈层状流动。在最窄处以下,气体被快速压缩,加速至超音速,在气液流界面由于剪切应力,金属熔体丝以更高的

9、速度变形,最终不稳定而破裂成许多更细的丝,最终凝结成细小粉末。该技术可直接生产许多适合于 MIM的贵金属粉、特殊牌号的不锈钢和高速钢粉、铜基合金和超合金粉等,该公司产品粉末粒度约为 10um,其中 20um粒度以下的粉末约占 90% 。2 粘结剂粘结剂是 MIM技术的核心,在 MIM中粘结剂具有增强流动性以适合注射成形和维持坯块形状这两个最基本的职能,此外它还应具有易于脱除、无污染、无毒性、成本合理等特点,为此出现了各种各样的粘结剂,近年来正逐渐从单凭经验选择向根据对脱脂方法及对粘结剂功能的要求,有针对性地设计粘结剂体系的方向发展。粘结剂一般是由低分子组元与高分子组元再加上一些必要的添加剂构成

10、。低分子组元粘度低,流动性好,易脱去;高分子组元粘度高,强度高,保持成形坯强度。二者适当比例搭配以获得高的粉末装载量,最终得到高精度和高均匀性的产品。通常采用的粘结剂主要有:热塑性体系(石蜡基、油基和热塑性聚合物基) 、凝胶体系、热固性体系和水溶性体系。2.1 热塑性体系石蜡基粘结剂是最早使用,而且至今仍有竞争力的粘结剂体系,特别是壁厚小于 3MIM的零件,主要由石蜡与聚烯烃组成。如 HDPE,LDPE,PP,PS,EVA,PEEA,POM/PE 等。石蜡中PW,PEW 无极性,而 CW,BW 有弱极性,相互配合可改善粘结剂与粉末的粘合程度。石蜡高温粘度低,与塑料相容性好,粉末装载量高,但石蜡

11、体系冷却时收缩大,内应力大,脱脂慢。油基-粘结剂主要利用油在室温下为液态或半固态,与石蜡基粘结剂相比,改善了内应力,另外采用溶剂脱脂速度快。加然 German认为若采用溶剂脱脂,应采用氢化植物油或椰子油,然而许多文献报道可用其它多种油,如日本用花生油、Sasamw 油与 PE,PP 配成粘结剂,美国用 Hunt Weseen油与 PE构成粘结剂,石脑油可与 PMIMA配合。使用油基-粘结剂的难点在于增加油含量的同时要保持生坯强度,防止两相分离的产生,以及快速溶剂脱脂时解决溶胀和应力开裂的问题。AMAX Injection Molding 公司的专利技术对这些问题解决得较好。一般来说,热塑性聚合

12、物基粘结剂由于使用较多聚合物,成形坯强度高,但较多的聚合物会导致脱脂慢、装载量低。这一类体系也有报道,如 67%PP、22%微晶蜡、1%SA,以及72%PS,15%PP,10%PE,3%SA。最成功地应用于大规模工业生产的是 20世纪 90年代德国BASF公司开发的粘结剂。他们采用独特的方法解决了这类体系的不足,该粘结剂 90%以上为改性聚醛树脂加上少量添加剂以利于高温保形和降低粘度,不仅粉末装载量高,而且喂料粘度与石蜡基在同一数量级,可适合很广泛的粉末种类。公司已制成Fe,Fe/Ni,100Cr6,Fe/Co,WC/Co,Cu合金,YBa2Cu3O7 等多种喂料出售。2.2 凝胶体系1978

13、年美国的 R.D.Rivers发明了凝胶体系,由甲基纤维素、少量水、甘油和硼酸组成。甲基纤维素与水在受热时形成凝胶以提高生坯强度,特点是使用有机物少,脱脂快。不足之处是生坏强度低,脱模困难,不能连续生产,类似的体系还有琼脂与水。1994 年法国 Impac和 Metals Process System公司宣称开发了 Quickset无粘结剂工艺,只需传统 MIM粘结剂含量的 5%,实际上也是用极少量的有机物加液体载体以形成特殊的结构来获得生坯强度。据称该粘结剂体系已可用来生产厚至 20MIM,重达 800g的零件。目前日本 PAMCO公司正和 MPS公司联合研究,进一步开发这一技术。2.3 热

14、固性体系Brasel通过对多种热固性树脂的选择,确定了呋喃族树脂可用于 MIM,Petzoldt 应用端羰基的聚酰胺树脂,以多字能团环氧树脂为硬化交联剂,在 150-250时发生交朕,交朕温度高于注射和混炼温度。热固性粘结剂有些缺陷是难以解决的,如脱脂时不产生小分子,有残留,废次品不能重复使用等,因此限制了它在实际工业中的应用。2.4 水溶性体系水溶性粘结剂是 20世纪 90年代开发出的一类很有前途的体系,是从“固态聚合物溶液”(SPS)体系中发展起来的,用水溶性聚乙二醇(PEG)作主要成分,加部分 PMIMA或苯氧树脂作粘结剂,在脱氧蒸馏水中浸泡脱脂,但这种体系存在混合时间长、脱脂慢、溶胀等

15、缺陷。后来 Amwar作了改进,采用悬浮聚合得到的超高分子量的 PMIMA(分子量-106) ,配合以特定的混合方式,解决了变形问题,使水脱脂温度可以从室温升至 60-80,脱脂时间从 16h降至 3h,而且制备出了较高尺寸精度的产品。Hens 等另辟蹊径,用 PEG与可交联的聚合物 PVB于脱脂前或部分脱脂后用紫外光固化,也控制了脱脂变形。Bialo 发展了另一类水溶性体系,以聚氧化乙烯(PEO)为水溶性部分,成形坏只需在水中浸泡 60-70min就可脱除 PEO。水溶性体系由于采用水脱脂,价格便宜,无毒,有利于环保,然而粘结剂存在吸水问题,混合较难,产品尺寸精度还不高。所以,虽然该体系已问

16、世五年,但到目前为止,仍处于实验室阶段,但该体系无疑极具潜力,是发展方向。此外还有些新型粘结剂体系,工艺上各有特点。如美国专利提出的聚酰胺基粘结剂;日本专利报道的丙烯酸系粘结剂,特点是易除去,无副县长产物;含烷基的硅酸盐无机物粘结剂,其注射压力小于有机物粘结剂体系。此外还有自行合成的非晶态聚合物粘结剂,特点是可用混合溶剂解等。3 混炼混炼是将金属粉末与粘结剂混合得到均匀喂料的过程。由于喂料的性质决定了最终注射成形产品的性能,所以混炼这一工艺步骤非常重要。这牵涉到粘结剂和粉末加入的方式和顺序、混炼温度、混炼装置的特性等多种因素。这一工艺步骤目前一直停留在依靠经验摸索的水平上,最终评价混炼工艺好坏

17、的一个重要指标就是所得到喂料的均匀和一致性。MIM喂料的混合是在热效应和剪切力的联合作用下完成的。混料温度不能太高,否则粘结剂可能发生分解或者由于粘度太低而发生粉末和粘结剂两相分离现象,至于剪切力的大小则依混料方式的不同而变化。MIM 常用的混料装置有双螺旋挤出机、Z 形叶轮混料机、单螺旋挤出机、柱塞式挤出机、双行星混炼机、双凸轮混料机等,这些混料装置都适合于制备粘度在 1-1000Pas 范围内的混合料。混炼的方法一般是先加入高熔点组元熔化,然后降温,加入低熔点组元,然后分批加入金属粉末。这样能防止低熔点组元的气化或分解,分批加入金属粉可防止降温太快而导致的扭矩急增,减少设备损失。对于不同粒

18、度粉末搭配时的加料方式,日本专利介绍:先将较粗的 15-40um水雾化粉加入粘结剂中,然后加入 5-15um粉,最后加入粉度5um 粉,这样得到的最终产品的收缩变化很少。为了在粉末周围均匀涂覆一层粘结剂,还可将金属粉末直接加入到高熔点组元中,再加入低熔点组分,最后去除空气即可。如 Anwar将 PMIMA悬浮液直接加入到不锈钢粉中混合,然后将 PEG水溶液加进去,干燥,然后边搅边除去空气。Oconnor采用溶剂混合,先将 SA与粉干混再加入四氢呋喃溶剂,然后加入聚合物,四氢呋喃在受热中逸去后,再加入粉末混合,可得到均匀的喂料。4 注射成形 注射成形的目的是获得所需形状的无缺陷、颗粒均匀排由的

19、MIM成形坯体。如图 1所示,首先将粒状喂料加热至一定高的温度使之具有流动性,然后将其注入模腔中冷却下来得到所需形状的具有一定刚性的坯体,然后将其从模具中取出得到 MIM成形坯。这个过程同传统塑料注射成形过程一致,但由于 MIM喂料高的粉末含量,使得其注射成形过程在工艺参数上及其它一些方面存在很大差别,控制不当则易产生各种缺陷。MIM产品可能的缺陷大部分是在注射成形步骤中形成,如裂纹、孔隙、焊缝、分层、粉末与粘结剂分离现象等。但这些缺陷经常是直至脱脂和烧结后由于注射时产生的应力被释放后才能发现,因此,注射成形工艺的控制对提高产品成品率和材料利用率非常关键。注射成形时缺陷控制问题基本可以分为二个

20、方面,一是成形温度、压力、时间三者函数关系设定,另一方面则是填充时喂料在模腔中的流动就牵涉到模具设计的问题,包括在进料口的位置、流道的长短、排气孔的设置等,这些都需要对喂料流变性质、模腔内温度和残余应力分布清楚的了解。计算机模拟技术在金属粉末注射成形模具设计方面将可发挥重要的作用。5 脱脂从 MIM技术产生以来,随着粘结剂体系的不同,形成了多种 MIM工艺路径,脱脂方法也多种多样。脱脂时间由最初的几天缩短以了现在的几小时。从脱脂步骤上可以粗略地将所有的脱脂方法分为两大类:一类是二步脱脂法。二步脱脂法包括溶剂脱脂+热脱脂,虹吸脱脂热脱脂等。一步脱脂法主要是一步热脱脂法,目前最先进的是 amaet

21、amold法。下面分别介绍几种有代表性的 MIM脱脂方法。5.1 Wiech法Wiech法以 Wiech于 1980年发明的专利为代表,并经过了几次改进。可将其称为Wiech(1) 、 (2)和(3)法。Wiech 所用的粘结剂为 MIM中最常用的蜡基粘结剂体系,含一种或多种组元。Wiech(1)法的基本过程是:首先将 MIM成形坯置于一直空容器内,将其加热到粘结剂的流动温度或高于这个温度,然后将溶剂以气态形式缓慢地加入成形坏所在的容器内。气态溶剂进入成形坯溶解粘结剂,溶解到一定程度,粘结剂的溶剂溶液会从成形坏中渗出。通过这种气态溶剂可以脱除大部分的粘结剂而不会产生裂纹或断裂现象。将已脱除了大

22、部分粘结剂的成形坯再浸入液态溶剂中除去剩余的部分粘结剂。由于已经通过气态溶剂脱脂形成的孔隙能道,第二步浸入式溶剂脱脂速度很快,且不会产生裂纹和缺陷。最后将成形坯预热以除去残留的部分粘结剂和部分溶剂,并进行烧结得到成品。Wiech(1)法仅气态溶剂脱脂就需 3天时间,脱脂效率很低。且由于脱脂温度高于粘结剂流动温度,变形较严重。Wiech于 1981年发明了 Wiech(3)法,其基本过程是:将 MIM成形坯置于一惰性气体容器中,通过调节温度和气体流量,使得成形坯中粘结剂的蒸气压高于容器内气氛压力,这样粘结剂能从成形坏中蒸发出来进入容器气氛中,容器中有一个独立部分用来冷凝收集粘结剂,粘结剂脱除速度

23、可以通过调节冷凝速度来控制。对于多组元粘结剂,还可以通过调节容器内温度和压力,有选择地逐步蒸发排除。此过程约需一天或一天以上时间。Wiech于 1981年发明了 Wiech(2)法,采用虹吸脱脂作为第一步,将 MIM成形坯置于虹吸料上,缓慢升温至 200保温 3h以脱除大部分粘结剂,然后再将成形坯放入炉中于一个大气压的氢气氛中以约 3/min 的速率升至约 800进行进一步脱脂和预烧结,整个脱脂过程约 10h左右。这样,Wiech 实际上采用了三种形式的二步法进行脱脂,先是采用溶剂蒸气脱脂,然后是蒸发法,后来又采用虹吸脱脂作为第一步,脱脂时间也由最初的 3天缩短到了 10个小时。但都存在一些缺

24、点,Wiech(1)法效率低,成形坯易产生变形。Wiech(2)法脱脂炉内气氛压力需精确控制,且对于销大分子量的粘结剂组元,则蒸发法很难奏效。Wiech(3)法存在虹响应料粘附于成形坯和污染成形坯的问题。5.2 Injectamax法美国 AMAX Metal Injection Molding公司的 Johnson于 1988年发明了 Injectamax法,该方法的主要优点在于脱脂速度快且不会造成裂纹。其粘结剂由至少两种组元构成,脱脂时选用一种溶剂有选择地首先溶解脱除粘结剂中的可溶性组元,而不溶性组元则不溶解。这样打开孔隙通道,然后再利用热脱脂除去剩余的粘结剂。该法采用的粘结剂一般由植物油

25、、石蜡和热塑性树脂构成,采用三氯乙烷溶剂首先除去油和石蜡。整个脱脂工艺过程时间短,只需 6h,是一种快速的脱脂方法。这种溶剂脱脂+热脱脂两步法由于简单、投资少和高效率,是目前大多数 MIM公司和生产厂家所采用的生产方法。5.3 水溶解法水溶解法是建立在 90年代发展起来的水溶性粘结剂基础上的,它是类似于 Injectamax二步法(溶剂脱脂+热脱脂)的直接发展。由于化学溶剂存在毒性、回收等问题,如果能用便宜、无污染的水作为溶剂则可将 MIM工艺水平大大提高一步。Cao 发展了一种固态聚合物溶液脱氧蒸馏水中浸泡约 16h即可除去 80%的聚乙二醇,然后再采用热脱脂法除去剩余的粘结剂。Anwar

26、和 Yang也采用聚乙二醇+聚甲基丙烯酸甲酯粘结剂体系做了一些工作,通过采用提高水温至 60-80,可在此 h除脱 95%以上的聚乙二醇。Bialo 发展了另一种形式的水溶性粘结剂,它采用聚氧化乙烯作为水溶性部分,其粘结剂配方为 76%聚氧化乙烯+23%聚乙烯蜡1%硬脂酸,成形坯只需在水中浸泡 60-70min就脱除了大部分聚氧化乙烯。由于水价格便宜 、无毒、无污染问题,水溶解法是一种经济且对环境最为有利的脱脂主法。但是水溶性粘结剂存在吸水问题,导致 MIM喂料的贮存和运输需特殊装置,并且与水溶性粘结剂中的水溶性部分(如聚乙二醇)相容的聚合物很少且混炼时易发生溶胀,喂料混炼时间很长。所以虽然不

27、溶解法问世五年,但到目前为止还处于实验室阶段,没有用于实际生产。5.4 Metamold法Metamold法是由德国 BSAF公司的 Bloemacher等于 90年代初开发出来的 MIM一步脱脂方法,是一种催化脱脂方法 。该法的主要技术特点是采用聚醛树脂作为粘结剂并在酸性气氛中快速催化脱脂。采用长链聚醛树脂作为粘结剂,利用聚醛树脂的极性连接金属粉末,可以适合于很广泛的粉末种类范围。聚醛树脂在酸性气氛催化作用下分解为甲醛,这种分解反应在 110以上快速发生,是一种直接的气-固转变,有利于控制生坯变形,保证了烧结后的尺寸精度。催化脱脂在气氛-粘结剂的界面进行,在成形坯内部没有气体存在,反应界面的

28、推进速度可达到 1-4MM/h。德国 CREMER公司针对 Metamold脱脂法设计了一种连续脱脂和烧结炉系统,操作过程是:将 MIM成形坏放在脱脂的第一个加热区,并在氮气气氛下加热至 86,以避免在随后的催化脱脂过程中硝酸冷凝在坯料上。然后将成形坯移动进入催化脱脂区,将聚醛树脂分解为甲醛。经过初步脱脂后,坯料通过第一个清洁室进入烧结炉,在烧结炉的第一个加热区脱除残余的粘结剂。随后,在氮气、氢气、氩气、分解氨和其它一些混合物的作用下进行烧结。Metamold 法的一个重要特点是采用催化剂脱脂,脱脂时不出现液相,避免了 MIM产品容易发生变形和尺寸精度控制困难的弱点,是 MIM产业的一个重大突

29、破,并且由于是催化脱脂,大大缩短了脱脂时间,从而降低了成本。并且应用 Metamold法能产生较大尺寸的 MIM零部件。采用 CREMER公司的连续脱脂和烧结系统,能够实现连续化生产,使得 MIM真正成为一种具有竞争力的 PM近净成形技术。 Metamold法是目前应用于工业生产中最先进的 MIM脱脂方法。不过这种方法存在酸性气氛腐蚀设备、废气处理等问题,且设备投资成本相对其它方法更高。6 烧结烧结是 MIM工艺中的最后一步工序,烧结消除了粉末颗粒之间的孔隙使得 MIM产品达到全致密或接近全致密化。金属注射成形技术中由于采用大量的粘结剂,所以烧结时收缩非常大,其线收缩率一般达到 1325,这样

30、就存在一个变形控制和尺寸精度控制的问题。尤其是因为 MIM产品大多数是复杂形状的异形件,这个问题显得越发突出,均匀的喂料对于最终烧结产品的尺寸精度和变形控制是一个关键因素。高的粉末摇实密度可以减小烧结收缩,也有利于烧结过程的进行和尺寸精度控制。对于铁基和不锈钢等制品,烧结中还有一个碳势控制问题。由于目前细粉末价格较高,研究粗粉末坯块的强化烧结技术是降低粉末注射成形生产成本的重要途径,该技术是目前金属粉末注射成形研究的一个重要研究方面。MIM产品由于形状复杂,烧结收缩大,大部分产品烧结完成后仍需进行烧结后处理,包括整形、热处理(渗碳、渗氮、碳一氮共渗等) ,表面处理(精磨、离子氮化、电镀、喷丸硬化等)等。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 精品笔记

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。