1、北师大版八年级上册第一章第一节探索勾股定理 (第 1 课时 )教学设计 第 1 页第一章 勾股定理 1. 探索勾股定理 ( 第 1 课时 ) 一、学生起点分析 八年级学生已经具备一定的观察、归纳、探索和推理的能力在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够 部分学生听说过 “ 勾三股四弦五 ” ,但并没有真正认识什么是 “ 勾股定理 ” 此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强 二、教学任务分析 本节课是义务教育课程标准实验教科书北师大版八年级 (上 )第一章勾股定理第
2、一节第 1 课时 . 勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值 为此本节课的教学目标是: 1用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用 2让学生经历 “观察 猜 想 归纳 验证 ”的数学思想,并体会数形结合和特殊到一般的思想方法 3进一步发
3、展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系 4在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化 历史 ,激励学生发奋学习 三 、教学过程 设计 本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现北师大版八年级上册第一章第一节探索勾股定理 (第 1 课时 )教学设计 第 2 页勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业 第一环节:创设情境,引入新课 内容: 2002 年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标: 会标中央的图
4、案是一个与 “勾股定理 ”有关的图形,数学家曾建议用 “勾股定理 ”的图来作为与 “外星人 ”联系的信号 今天我们就来一同探索勾股定理 (板书课题) 意图: 紧扣课题,自然引入,同时渗透爱国主义教育 . 效果: 激发起学生的求知欲和爱国热情 . 第二环节:探索发现勾股定理 1探究活动一 内容: 投影显示如下地板砖示意图, 引导学生从面积角度观察图形: 问:你能发现各图中三个正方形的面积之间有何关系吗? 学生通过观察,归纳发现: 结论 1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积 意图: 从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边通过
5、对特殊情形的探究得到结论 1,为探究活动二作铺垫 . 效果: 1探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力; 2通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望 . 2探究活动二 内容: 由结论 1 我们自然产生联想:一般的直角三角形是否也具有该性质呢? ( 1)观察下面两幅图: ABCCBA北师大版八年级上册第一章第一节探索勾股定理 (第 1 课时 )教学设计 第 3 页( 2)填表: A 的面积 (单位面积) B 的面积 (单位面积) C 的面积 (单位面积) 左图 右图 ( 3)你是怎样得到正方形 C 的面积的?与同伴交流 (学生可能会做出多种方法,教师应给
6、予充分肯定 ) 图 1 图 2 图 3 学生的方法可能有: 方法一: 如图 1 ,将 正方 形 C 分割 为四 个全 等的直 角三 角形 和一 个 小正方 形, 13132214 CS 方法二: 如图 2,在正方形 C 外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积, 13322145 2 CS 方法三: 如图 3,正方形 C 中除去中间 5 个小正方形外,将周围部分适当拼接可成为正方形,如图 3 中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法, 13542 CS ( 4)分析填表的数据,你发现了什么? 学生通过分析数据,归纳出: 北师大版八年级上册
7、第一章第一节探索勾股定理 (第 1 课时 )教学设计 第 4 页结论 2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积 意图: 探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质 由于正方形 C 的面积计算是一个难点,为此设计了一个交流环节 . 效果: 学生通过充分讨论探究,在突破正方形 C 的面积计算这一难点后得出结论 2. 3议一议 内容: ( 1)你能用直角三角形的边长 a , b , c 来表示上图中正方形的面积吗? ( 2)你能发现直角三角形三边长度之间存在什么关系吗? ( 3)分别以 5 厘米、 12 厘米为直角边作出一个
8、直角三角形,并测量斜边的长度 2 中发现的规律对这个三角形仍 然成立吗? 勾股定理 : 直角三角形两直角边的平方和等于斜边的平方 如果 用 a , b , c 分别表示直角三角形 的 两直角边 和 斜边,那么 222 cba 数学小史: 勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦, “勾股定理 ”因此而得名 (在西方 文献中又 称为毕达哥拉斯定理) 意图: 议一议意在让学生在结论 2 的基 础上,进一步发现直角三角形三边关系,得到勾股定理 . 效果: 1让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力 ; 2通过作图培养学生的动
9、手实践能力 . 第三环节:勾股定理的简单应用 内容: 例 题 如图所示,一棵大树在一次强烈台风中于离地面 10m处折断倒下,树顶落在离树根 24m 处 . 大树在折断之前高多少? (教师板演解题过程) 练习: 1基础巩固练习: 求下列图形中未知正方形的面积或未知边的长度(口答): 弦股勾?225100x1517北师大版八年级上册第一章第一节探索勾股定理 (第 1 课时 )教学设计 第 5 页2生活中的应用: 小明妈妈买了一部 29 in( 74 cm)的电视机 . 小明量了电视机的屏幕后,发现屏幕只有58 cm长和 46 cm 宽,他觉得一定是售货员搞错了你同意他的想法吗?你能解释这是为什么吗
10、? 意图: 练习第 1 题是勾股定理的直接运用,意在巩固基础知识 效果: 例题和练习第 2 题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生 “用数学 ”的意识运用数学知识解决实际问题是数学教学的重要内容 . 第四环节:课堂小结 内容: 教师提问: 1这一节课我们一起学习了哪些知识和思想方法? 2对这些内容你有什么体会?与同伴 进行 交流 在学生自由发言的基础上,师生共同 总结: 1知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方如果 用 a , b , c分别表示 直角三角形 的 两直角边 和 斜边,那么 222 cba 2方法: ( 1) 观察 探索 猜想 验证
11、归纳 应用; ( 2) “割、补、拼、接 ”法 . 3思想: ( 1) 特殊 一般 特殊; ( 2) 数形结合思想 意图: 鼓 励学生积极大胆发言,可增进师生、生生之间的交流、互动 效果: 通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识 . 第五环节:布置作业 内容: 布置作业: 1教科书习题 1.1. 北师大版八年级上册第一章第一节探索勾股定理 (第 1 课时 )教学设计 第 6 页2观察下图,探究图中三角形的三边长是否满足 222 cba ? 意图: 课后作业设计包括了三个层面:作业 1 是为了巩固基础知识而设计;作业 2 是为了扩展学生的知识面;作业 3 是
12、为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件 效果: 学生进一步 加强对本课知识的理解和掌握 五、教学设计反思 ( 一 )设计理念 依据 “学生是学习的主体 ”这一理念, 在探索勾股定理的 整个 过程中,本 节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习 教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点 . ( 二 )突出重点、突破难点的策略 为了让学生在学习过程中自我发现勾股定理,本节课首先 情景创设激发兴趣, 再 通过几个探究活动引导学生 从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的 关系,进而得到勾股定理 a bcabc