锅炉燃烧理论基础.doc

上传人:hw****26 文档编号:3517919 上传时间:2019-06-01 格式:DOC 页数:44 大小:921.50KB
下载 相关 举报
锅炉燃烧理论基础.doc_第1页
第1页 / 共44页
锅炉燃烧理论基础.doc_第2页
第2页 / 共44页
锅炉燃烧理论基础.doc_第3页
第3页 / 共44页
锅炉燃烧理论基础.doc_第4页
第4页 / 共44页
锅炉燃烧理论基础.doc_第5页
第5页 / 共44页
点击查看更多>>
资源描述

1、第一章 锅炉燃烧理论基础第一节 燃烧理论解决问题学习燃烧理论的目的是为了了解认识燃烧过程的本质,掌握燃烧过程的主要规律,以便控制燃烧过程的各个阶段,使其按照人们的要求的速度进行,燃烧理论解决的问题是:(1) 判断各种燃料的着火可能性,分析影响着火的内因条件与外因条件以及着火过程基本原理,保证燃料进入炉内后尽快稳定地着火,保证燃烧过程顺利进行。(2) 研究如何提高燃料的燃烧速度,使一定量的燃料在有限的空间和时间内尽快燃烧,分析影响燃烧速度的内因条件与外因条件,以及燃尽过程的基本原理,提出加速燃烧反应,提高燃烧效率的途径。(3) 燃烧理论来源于生产实践和科学试验。反过来又指示出燃烧技术进步与发展的

2、方向。第二节 质量作用定律-化学反应速度1质量作用定律燃烧是一种发光发热的化学反应。燃烧速度可以用化学反应速度来表示。在等温条件下,化学反应速度可用质量作用定律表示。即反应速度一般可用单位时间,单位体积内烧掉燃料量或消耗掉的氧量来表示。可用下面的式子表示炉内的燃烧反应:= (5-1)(燃料)(氧化剂) (燃烧产物)化学反应速度可用正向反应速度表示,也可用逆向反应速度来表示。即(5-2)(5-3)2. 质量作用定律的意义质量作用定律说明了参加反应物质的浓度对化学反应速度的影响。其意义是:对于均相反应,在一定温度下,化学反应速度与 参加反应的各反应物的浓度乘积成正比,而各反dtCWAA=dtCWB

3、B=tGtH应物浓度的方次等于化学反应式中相应的反应系数。因此,反应速度又可以表示为:(5-4)式中 A, B-反应物 A,B 的浓度a , b-化学反应式中,反应物 A,B 的反应系数;kA, kB-反应速度常数。3多相燃烧的化学反应速度对于多相反应,如煤粉燃烧,燃烧反应是在固体表面上进行的,固体燃料的浓度不变,即 CA=1。反应速度只取决于燃料表面附近氧化剂的浓度。用下式表示:(5-5) 式中 B- 固体燃料表面附近氧的浓度上式说明,在一定温度下,提高固体燃料附近氧的浓度,就能提高化学反应速度。反应速度越高,燃料所需的燃尽时间就越短。上述关系只反映了化学反应速度与参加反应物浓度的关系。事实

4、上,反应速度不仅与反应物浓度有关,更重要的是与参加反应的物质本身有关,具体地说,与煤或其它燃料的性质有关。化学反应速度与燃料性质及温度的关系可用阿累尼乌斯定律表示。阿累尼乌斯定律在实际燃烧过程中,由于燃料与氧化物 (空气)是按一定比例连续供给的,当混合十分均匀时,可以认为燃烧反应是在反应物质浓度不变的条件下进行的.这时,化学反应速度与燃料性质及温度的关系为:kk 0 (E/RT) (5-6)式中, k0 -相当于单位浓度中,反应物质分子间的碰撞频率及有效碰撞次数的 系数E反应活化能;R通用气体常数;T反应温度:bBaAAACkdtW=baBBtbBABBCfkdtW=k反应速度常数(浓度不变)

5、。阿累尼乌斯定律说明了燃料本身的“活性”与反应温度对化学反应速度的影响的关系。什么是燃料的“活性”呢?可以简单地理解为燃料着火与燃尽的难易程度。例如,气体燃料比固体燃料容易着火,也容易燃尽。而不同的固体燃料,“活性”也不同,烟煤比无烟煤容易着火,也容易燃尽。因此,燃料的“活性”也表现为燃料燃烧时的反应能力。燃料的“活性”程度可用“活化能”来表示。第三节 影响化学反应速度的因素质量作用定律和阿累尼乌斯定律指出了影响燃烧反应速度的主要因素是反应物的浓度活化能和反应温度。一反应物浓度的影响虽然认为实际燃烧过程中,参加反应物质的浓度是不变的,但实际上,在炉内各处在燃烧反应的各个阶段中,参加反应的物质的

6、浓度变化很大。在燃料着火区,可燃物浓度比较高,而氧浓度比较低。这主要是为了维持着火区的高温状态,使燃料进入炉内后尽快着火。但着火区如果过分缺氧则着火就会终止,甚至引起爆炸。因此在着火区控制燃料与空气的比例达到一个恰到好处的状态,是实现燃料尽快着火和连续着火的重要条件。反应物浓度对燃烧速度的影响关系比较复杂,将在后面的内容中加以分析。二 活化能对燃烧速度的影响1活化能概念燃料的活化能表示燃料的反应能力。活化能的概念是根据分子运动理论提出的,由于燃料的多数反应都是双分子反应,双分子反应的首要条件是两种分子必须相互接触,相互碰撞。分子间彼此碰撞机会和碰撞次数很多,但并不是每一个分子的每一次碰撞都能起

7、到作用。如果每一个分子的每一次碰撞都能起到作用,那么即使在低温条件下,燃烧反应也将在瞬时完成。然而燃烧反应并非如此,而是以有限的速度进行。所以提出只有活化分子的碰撞才有作用。这种活化分子是一些能量较大的分子。这些能量较大的分子碰撞所具有的能量足以破坏原有化学键,并建立新的化学键。但这些具有高水平能量的分子是极少数的。要使具有平均能量的分子的碰撞也起作用,必须使他们转变为活化分子,这一转变所需的最低能量称为活化能,用表示。所以活化分子的能量比平均能量要大,而活化能的作用是使活化分子的数目增加。图 5-1 表示出活化能的意义。从图可见,要使反应物由变成燃烧产物,参加反应的分子必须首先吸收活化能,使

8、活化分子数目增多,达到活化状态,数目较多的分子产生有效碰撞,发生反应而生成燃烧产物,并放出比1(活化能)更多的能量 2,而燃烧反应的净放热量为。能量 活化状态E1 E2燃料的活化能对燃烧速度的影响在一定温度下,某一种燃料的活化能越小,这种燃料的反应能力就越强,而且反应速度随温度变化的可能性就减小,即使在较低的温度下也容易着火和燃尽。活化能愈大的燃料,其反应能力愈差,反应速度随温度的变化也愈大,即在较高的温度下才能达到较大的反应速度,这种燃料不仅着火困难,而且需要在较高的温度下经过较长的时间才能燃尽。燃料的活化能水平是决定燃烧反应速度的内因条件。一般化学反应的活化能大约在 42420kJ/mol

9、,活化能小于 42kJ/mol 的反应,反应速度极快,以至难于测定。活化能大于 420kJ/mol 的反应,反应速度缓慢,可认为不发生反应。燃煤的活化能及频率因子可在沉降炉中测定,表 5-1 是国内四种典型煤种的测定结果。不同的测试仪器所测量的数据差别较大,因此,只有同一仪器测量的数据才具有可比性。 daf 频率因子 活化能煤种 % g/(cm2.s.MPa) KJ/mol反应过程E2无烟煤 5.15 96.83 85.212贫煤 15.18 12.61 55.098烟煤 33.40 7.89 45.452烟煤 41.02 5.31 38.911三温度对燃烧速度的影响温度对化学反应的影响十分显

10、著。随着反应温度的升高,分子运动的平均动能增加,活化分子的数目大大增加,有效碰撞频率和次数增多,因而反应速度加快。对于活化能愈大的燃料,提高反应系统的温度,就能愈加显著地提高反应速度。第一节 热力着火理论一热力着火理论的实用性煤粉燃烧过程的着火主要是热力着火,热力着火过程是由于温度不断升高而引起的。因为煤粉燃烧速度很快,燃烧时放出的大量热量使炉膛温度升高,而炉温升高促使燃烧速度加快;反应放热增加,又使炉温进一步提高。这样相互作用、反复影响,达到一定温度时,就会发生着火。着火过程有两层意义:一是着火是否可能发生,二是能否稳定着火。只有稳定着火,才能保证燃烧过程持续稳定的进行,否则就可能中途熄火,

11、使燃烧过程中断。在炉膛四周布置的水冷壁直接吸收火焰的辐射热,因而燃料燃烧时放出的热量,同时向周围介质和炉膛壁面散热。这时,要使可燃物着火并连续着火,必须使可燃物升温。二实现稳定着火的两个条件:1、放热量和散热量达到平衡,放热量等于散热量。2、放热速度大于散热速度如果不具备这两个条件,即使在高温状态下也不能稳定着火,燃烧过程将因火焰熄灭而中断,并不断向缓慢氧化的过程发展。三热力着火过程的特性曲线燃烧室内可燃混合物燃烧放热量为:21Q=dT21(5-7)向周围环境散失的热量为:Q2=S(- ) (5-8)CO2-煤粉反应表面氧浓度;N-燃烧反应中氧的反应系数;V-可燃混合物的容积;Qr-燃烧反应热

12、;-燃烧反应物温度; -燃烧室壁面温度;-混合物向燃烧室壁面的放热系数;图 5-3 热力着火过程曲线S-燃烧室壁面面积。点 1:缓慢氧化状态点 2:着火点,点 3:高温燃烧状态点 4:熄火点,点 5:氧化状态熄火温度Xh 总是比着火温度Zh 高。着火温度和熄火温度并不是常数,它们随放热条件而变。四煤、煤粉气流和气体燃料的着火温度挥发分大的烟煤,活化能小,反应能力强,着火温度低,即使周围散热条件较强,也rnORTEoVQCek21=1 5 24 3容易稳定着火;挥发分很低的无烟煤,活化能大,反应能力低,着火温度最高,需要减小周围散热,维持高温状态,才能稳定着火。表 5-3 各种煤的着火温度煤种

13、无烟煤 烟煤 褐煤着火温度 700800 400500 250450表 5-4 煤粉气流中煤粉颗粒的着火温度煤种 无烟煤 贫煤(Vr=14) 烟煤 褐煤着火温度 1000 900 650840 550表 5-5 液体燃料和气体燃料的着火温度燃料 高炉煤气 发生炉煤气 炼焦煤气 天然气 石油着火温度 530 530 300500 530 360400着火温度五锅炉运行中的热力着火分析放热速度与散热速度是相互作用的。在实际炉膛内,当燃烧处于高负荷状态时,由于燃煤量增加,燃烧放热量比较大,而散热量变化不大,因此使炉内维持高温状态。在高负10007008009001100Vdaf 5 15 25 35

14、荷运行时,容易稳定着火。当燃烧处于低负荷运行时,由于燃煤量减少,燃烧放热量随之减小,这时相对于单位放热量的散热条件却大为增加,散热速度加快,因此炉内火焰温度与水冷壁表面温度下降,使燃烧反应速度降低,因而放热速度也就变慢,进一步使炉内处于低温状态。在低负荷运行状态下,稳定着火比较困难,因此需要投入助燃油等燃料来稳定着火燃烧。对于低反应能力的无烟煤和劣质烟煤,不但着火困难,而且难于稳燃,因而容易熄火 ”打炮”。从以上分析,可得到提示:(1) 着火和燃烧温度与水冷壁面积、进入炉内的新气流初温度相关。(2) 在炉内可自动到达稳定着火状态,如果点火区的温度与燃料的活性不相适应,就需投入助燃油或采用强化着

15、火的措施。第三节 火焰的传播一火焰传播理论的实用性燃料燃烧过程中,火焰的稳定性与火焰传播速度关系极大。电厂燃烧系统的安全运行也与火焰传播速度关系密切。例如,煤粉管道中某一处着火后,火焰迅速蔓延、扩散,导致制粉系统着火或爆炸。了解火焰传播的知识,有助于掌握燃烧过程的调整要领,对稳定着火非常有用。二层流火焰传播在静止的可燃气体混合物中,缓慢燃烧的火焰传播是依靠导热或扩散使未燃气体混合物温度升高,火焰一层一层的依次着火。火焰传播速度一般为 20100cm/s。三湍流火焰传播湍流火焰传播 速度加快,一般为 200cm/s 以上。火焰短,燃烧室尺寸紧凑,湍流火焰易产生噪声。四火焰传播形式1正常的火焰传播

16、(缓慢燃烧)正常的火焰传播是指可燃物在某一局部区域着火后,火焰从这个区域向前移动,逐步传播和扩散出去,这种现象就称为火焰传播。正常的火焰传播过程中,火焰传播速度比较缓慢,约为 13m/s,燃烧室内压力保持不变。炉内煤粉气流正常燃烧的火焰传播就属于正常的火焰传播。2反应速度失去控制的高速爆炸性燃烧炉膛内火焰传播为湍流火焰 ,火焰传播速度很 快。出现爆炸性燃烧时,火焰传播速度极快,达 1000 -3000m/s,温度极高,达 6000;压力极大,达 2026500Pa ( 20.67 )大气压)。爆燃是由于可燃物以极高的速度反应,以至于反应放热来不及散失,因而使温度迅速升高,压力急剧增大。而压力的

17、急剧增大是由于高温烟气的比容比未燃烧的可燃混合物的比容大得多,高温烟气膨胀产生的压力波,使未燃混合物绝热压缩,火焰传播速度迅速提高,以致产生爆炸性燃烧。3正常燃烧向爆炸性燃烧的转变当火焰正常燃烧时,有时会发生响声。此时,如果缩热压缩很弱,不会引起爆炸性燃烧。但当未燃混合物数量增多时,绝热压缩将逐渐增强,缓慢的火焰传播过程就可能自动加速,转变为爆炸性燃烧。五不同燃料的火焰传播速度可燃混合物着火时的火焰传播速度即为着火速度。对于不同的燃料,火焰传播速度的差异很大。气体燃料和液体燃料的火焰传播速度远远大于煤粉气流的火焰传播速度。就煤粉气流本身而言,火焰传播速度的差别也很大。例如,燃用烟煤时的火焰传播

18、速度比贫煤、无烟煤的火焰传播速度要大。因此,烟煤着火后,燃烧比较稳定。六煤粉气流火焰传播速度的影响因素煤粉气流的火焰传播速度受多种因素的影响,其首先决定于燃料中可燃挥发分含量的大小,其次还与水分、灰分、煤粉细度、煤粉浓度和煤粉气流混合物的初温及燃烧温度有关。一般情况下,挥发分大的煤,火焰传播速度快;灰分大的煤火焰传播速度小;水分增大时,火焰传播速度降低。提高煤粉细度时,挥发分析出快,并增加了燃料的反应面积,火焰传播速度可显著提高。提高炉膛温度时,火焰面向周围环境的散热减少,反应速度加快,因而提高了火焰传播速度。锅炉在高负荷运行时,炉膛环境温度较高,容易稳定燃烧;锅炉在低负荷运行时,燃烧放热量减

19、少,冷却散热条件增强,需要加强稳燃措施或增加易燃的液体或气体燃料,来帮助煤粉气流稳定燃烧,其实质是提高火焰传播速度。第七节 链锁反应气体燃料的燃烧反应速度很高,而且在温度极低(如 T0时)的场合下,反应仍可以很高的速度进行。这种反应并不是按化学反应方程式那样一步完成的,也并不需要给反应物质施加能量,使活化分子的数目增多。在气体燃料燃烧反应过程中,可以自动产生一系列活化中心,这些活化中心不断繁殖,使反应进行一系列中间过程,整个燃烧反应就象链一样一节一节传递下去,故称这种反应为链锁反应。链锁反应是一种高速反应。例如当温度超过 500时,氢的燃烧就变为爆炸反应。氢的链锁反应过程:氢分子吸收了极少的活

20、化能,被质点击活后,产生活化中心 ,同时产生游离基 ,便开始下列反应:2222222总的反应平衡式为:322322上式表明,一个氢分子与质点碰撞被击活而吸收活化能后,可以产生三个活化氢原子,而这三个活化氢原子在下一次反应过程中又可以产生九个活化氢原子,以此类推,。这是一种分支链锁反应,其反应速度极快。以至在瞬间即可完成。第八节 煤粉的着火燃烧煤粉的燃烧过程可由下述过程粗略地描写:煤粉受热,水分析出继续受热,绝大部分挥发分析出,挥发分首先着火引燃焦碳,并继续析出残余的部分挥发分,挥发分与焦碳一道燃尽形成灰渣。大部分挥发分着火,燃尽时间仅占整个燃烧过程的 10,约为 0.20.5 秒;而焦碳燃尽程度达到 98的过程所占的时间很长,约为 90,燃尽时间为 12.8 秒。从燃烧放热量来看,焦碳占煤粉总放热量的 6095。着火过程主要取决于煤中可燃基挥发分的大小,而燃尽过程主要取决于焦碳的燃烧速度。根据实际经验,一般着火时间长的燃料,所需的燃尽时间也相应地比较长。煤粉着火燃烧过程的细节十分复杂,只能说明几个阶段的主要特征。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。