1、2013年苏州市初中毕业暨升学考试试卷数 学本试卷由选择题、填空题和解答题三大题组成共29小题,满分130分考试时间120分钟注意事项:1答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效一、
2、选择题:本大题共有10小题,每小题3分,共30分在每小题所给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相应的位置上1等于 A2 B2 C2 D2计算2x23x2的结果为 A5x2 B5x2 Cx2 Dx23若式子在实数范围内有意义,则x的取值范围是 Ax1Bx0)的图象经过顶点B,则k的值为 A12 B20 C24 D329已知x3,则4x2x的值为 A1 B C D10如图,在平面直角坐标系中,RtOAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一动点,则PAPC的最小值为 A B C D2二、填空题:本大题
3、共8小题,每小题3分,共24分把答案直接填在答题卡相对应的位置上11计算:a4a2 12因式分解:a22a1 13方程的解为 14任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数大于4的概率为 15按照下图所示的操作步骤,若输入x的值为2,则输出的值为 16如图,AB切O于点B,OA2,OAB30,弦BCOA,劣弧的弧长为 (结果保留)17如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在 x,y轴的正半轴上点Q在对角线OB上,且OQOC,连接CQ并延长CQ交边AB于点P,则点P的坐标为( , )18如图,在矩形ABCD中,点
4、E是边CD的中点,将ADE沿AE折叠后得到AFE,且点F在矩形ABCD内部将AF延长交边BC于点G若,则 (用含k的代数式表示)三、解答题:本大题共11小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明作图时用2B铅笔或黑色墨水签字笔19(本题满分5分)计算:20(本题满分5分)解不等式组:21(本题满分5分)先化简,再求值:,其中x222(本题满分6分)苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅游已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人问甲、乙两个旅游团各有多少人?23(本题满分6分)某企业500名员工参加安
5、全生产知识测试,成绩记为A,B,C,D,E共5个等级,为了解本次测试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图:(1)求这次抽样调查的样本容量,并补全图;(2)如果测试成绩(等级)为A,B,C级的定为优秀,请估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数 (图)来源:学,科,网24(本题满分7分)如图,在方格纸中,ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与ABC不全等但面积相等的三角形是 (只需要填一个三角形);(2)先从D,E两个点
6、中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,求所画三角形与ABC面积相等的概率(用画树状图或列表格求解) 来源:Z,xx,k.Com25(本题满分7分)如图,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向,AB2(单位:km)有一艘小船在点P处,从A测得小船在北偏西60的方向,从B测得小船在北偏东45的方向(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到达点C处此时,从B测得小船在北偏西15的方向求点C与点B之间的距离(上述2小题的结果都保留根号)26(本题满分8分)如图,点P是菱形ABCD对角线AC上的
7、一点,连接DP并延长DP交边AB于点E,连接BP并延长BP交边AD于点F,交CD的延长线于点G(1)求证:APBAPD;(2)已知DF:FA1:2,设线段DP的长为x,线段PF的长为y求y与x的函数关系式;当x6时,求线段FG的长27(本题满分8分)如图,在RtABC中,ACB90,点D是边AB上一点,以BD为直径的O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F(1)求证:BDBF;(2)若CF1,cosB,求O的半径28(本题满分9分)如图,点O为矩形ABCD的对称中心,AB10cm,BC12cm点E,F,G分别从A,B,C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运
8、动速度为1cm/s,点F的运动速度为3cms,点G的运动速度为1.5cms当点F到达点C(即点F与点C重合)时,三个点随之停止运动在运动过程中,EBF关于直线EF的对称图形是EBF,设点E,F,G运动的时间为t(单位:s)(1)当t s时,四边形EBFB为正方形;(2)若以点E,B,F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B与点O重合?若存在,求出t的值;若不存在,请说明理由29(本题满分10分)如图,已知抛物线yx2bxc(b,c是常数,且c0)与x轴分别交于点A,B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(1,0)(1)
9、b ,点B的横坐标为 (上述结果均用含c的代数式表示);(2)连接BC,过点A作直线AEBC,与抛物线yx2bxc交于点E点D是x轴上一点,其坐标为(2,0),当C,D,E三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连接PB,PC,设所得PBC的面积为S 求S的取值范围;若PBC的面积S为整数,则这样的PBC共有 个2013年苏州市初中毕业暨升学考试试卷数学试题参考答案一、选择题 1A 2D 3C 4B 5B 6B 7C 8D 9D 10B二、填空题11a2 12(a1)2 13x2 141520 16 17(2,42) 18来源:Z&xx&k.Com