数列极限的解法(15种).doc

上传人:sk****8 文档编号:4281931 上传时间:2019-10-11 格式:DOC 页数:5 大小:332.50KB
下载 相关 举报
数列极限的解法(15种).doc_第1页
第1页 / 共5页
数列极限的解法(15种).doc_第2页
第2页 / 共5页
数列极限的解法(15种).doc_第3页
第3页 / 共5页
数列极限的解法(15种).doc_第4页
第4页 / 共5页
数列极限的解法(15种).doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1.定义法:设为数列,为定数,若对任给的正数,总存在正数N,使得当时,有,则称数列收敛于.记作:.否则称为发散数列.例1.求证其中. 证:当时,结论显然成立. 当时,记,则,由 得,任给,则当时,就有,即即 当 综上,例2.求 解:0,n=1,2,)极限存在,并求.证:由假设知 (1) 用数学归纳法易证: 此即证单调递增.用数学归纳法可证, 事实上, 由(1)(2)证得单调递增有上界,从而存在,对(1)式两边取极限得 ,解得和(舍去).4利用迫敛性准则(即两边夹法)迫敛性:设数列都以为极限,数列满足:存在正数N,当nN时,有,则数列收敛,且.例6.求解:记,则 由迫敛性得=.注:迫敛性在求数列

2、极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用.5利用定积分的定义计算极限黎曼积分定义:设为定义在上的一个函数,J为一个确定的数,若对任给的正数,总存在某一正数,使得对的任意分割T,以及在其上任意选取的点集,只要T,就有,则称函数在上(黎曼)可积,数J为在上的定积分,记作.例7. 解:原式= = =例8.求 解:因为又 =同理由迫敛性得=.注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义.部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论。6利用(海涅)归结原则求数列极限归结原则:对任何,有例9. 求 解:= =1 例10.计算解:一方面,另一方面, 由归结原则(取)由迫敛性得=注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 重点行业资料库 > 自然科学

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。