1、 外文翻译 原文 Solar Photovoltaic Report Material Source: ABS Energy Research 2009 Author: Anonymous Author PV Industry Value Chain The PV industry has three essential components, which constitute the value chain, each dependent on each other. Some companies concentrate on individual segments of the value
2、 chain others address all segments as integrated solar PV companies. These components are: Feedstock Solar PV cells and modules Balance of system Raw silicon is by far the most prevalent feedstock for solar cells, although reduced to 87% from 94% in the last few years. Bulk silicon is separated into
3、 multiple categories according to crystallinity and crystal size in the resulting ingot, ribbon or wafer. Monocrystalline silicon (c-Si) is often made using the Czochralski process. Single-crystal wafer cells are expensive because they are cut from cylindrical ingots Poly- or multi-crystalline silic
4、on (poly-Si or mc-Si) is made from cast square ingots. They are cheaper because they are less expensive to produce than single crystal cells but they are less efficient Ribbon silicon is formed by drawing flat thin films from molten silicon and they have a multi-crystalline structure. These cells ha
5、ve lower efficiencies than poly-Si, but save on production costs due to a great reduction in silicon waste because this approach does not require sawing from ingots. New Structures: These new compounds are special arrangements of silicon, such as organically modified silica, a-Si, and nanotechnologi
6、cal combinations that can dramatically improve efficiency. Thin film alternatives to thick crystal accounted for 13% of cells produced in 2007 according to Prometheus Institute. The various thin-film technologies currently being developed reduce the amount of light-absorbing material required in cre
7、ating a solar cell. Such coatings have about one percent of thick crystals depth. Polysilicon There are two sources of solar grade (SoG): silicon feedstock producers of electronic grade (EG) silicon for the Integrated Circuit (IC) industry producing semiconductors, and more recently several companie
8、s beginning to use metallurgical silicone (MG-Si) directly as a feedstock. It is generally referred to as multi-crystalline silicon, or poly-silicon (poly-Si, or poly). Until recently, SoG came from off-spec and waste silicon, produced either during the poly-silicon purification process or during in
9、got and wafer production but poly-silicon companies are now producing SoG specifically for solar PV use. Silicon must be highly purified for use as a semiconductor material, and electronic grade silicon requires a higher degree of purification than solar grade. For use in solar photovoltaics the sil
10、icon must be 99.9999% pure (often referred to as six nines or 6N pure), while electronic grade silicon is typically 9N to 11N. Silicon of either grade must undergo a lot of processing and passes through several stages. The first stage is the extraction of quartz from a silica mine. The quartz is hea
11、ted in a furnace with a carbon source, such as coal and coke, producing liquid silicon, which is refined and allowed to solidify. It is known as metallurgical silicon (MG-Si), which is 96% - 99% pure and is used by the steel industry a tiny proportion gets diverted to the electronic semiconductor in
12、dustry. In turn what was a small proportion of that quantity was directed to Photovoltaics. In the very recent past Photovoltaics equalled that used by electronics but of course of a different quality. MG-Si can be refined by several methods to produce poly-silicon, the most common of which is the S
13、iemens, or chemical vapour deposition (CVD) process now used for about 90% of production. It involves chemical deposition of trichlorosilane (TCD) gas on heated rods. The final product is a rod of silicon, which is then broken into chunks or granules of polysilicon. Other processes are the fluidised
14、 bed reactor (FBR) and a process developed by Union Carbide in the 1980s and now owned by REC, a dedicated Norwegian manufacturer of solar grade feedstock. The chunk or granular poly-silicon is then refined with one of several processes. The Czochralski (CZ) and float zone methods produce mono-cryst
15、alline ingots. Directional solidification or casting, ribbon, and sheet techniques produce multi-crystalline structures. The length of time of creating the crystal structure and the costs of electrical power needed to complete the process have been seen as blocks to further viability, although cleve
16、r techniques are being adopted, such as slicing thinner wafers or improving performance by ultrasonic plating. Thin Film Photovoltaic (TFPV) technology Various thin film technologies are being developed from lab to fab so as to reduce the amount of light absorbing material required in a solar cell.
17、Thin film PV uses thin film coating technologies and uses less material because the active area of the cell is usually only 1 to 10 micrometers thick, compared with 100 to 300 micrometers for thick film. An additional advantage is that thin-film cells can be manufactured in a large-area automated, c
18、ontinuous production process. The most common thin-film technologies use amorphous silicon (a-Si), cadmium telluride (CdTe), copper-indium-selenide (CIS) and copper-indium-gallium-diselenide (CIGS). Of these, CIGS has demonstrated the highest laboratory efficiency at 19.5% with CdTe close behind. CI
19、GS thin-film technologies can be placed on a wide variety of substrate materials making it possible to manufacture very lightweight, flexible solar cells on metals and plastics. To put it into perspective, the thickness of a flexible CIGS device is approximately the same as the thickness of a human
20、hair, making it very flexible and lightweight. Another specialised thin fill technology uses gallium arsenide (GaAs) with multijunction cells, which consist of multiple thin films. GaAs multijunction devices are the most efficient solar cells to date, reaching a record high of 40.7% efficiency under
21、 solar concentration and laboratory condition but are some time from commercialisation. The manufacturing processes for thin films are quite different from those used to produce SoG silicon. It is difficult for the companies introducing CIGS to adapt solar cell manufacturing technology. In addition,
22、 individual manufacturers are pursuing different processes. Applied Materials Inc. have been able to usefully employ their experience in manufacturing production lines for flat TV and computer screens to create plant capable of sputtering glass panels 2.2m X 2.6m. Moler Baer in India have achieved c
23、ertificated start up plant capable of producing these panels equivalent to 40MW pa as have T-Solar global with a 45MW production line in Spain both starting early 2009. The coating is microns thin and the panels reduce electrical complexity and are reckoned to reduce set up by 20%. Ingot and wafer p
24、roduction Ingot and wafer production are usually integrated in the same production facility. It in this area that shortages in feedstock for the PV market has had the most effect including drawing China to establish a large export market in the last couple of years. In 2008 Chinese shipments of ingo
25、ts and wafers reached 2,092 MW, around 40% of annual sales of cells in that year, and an increase from 1,049 MW in 2007 and 425 MW in 2006. Prices have declined and will continue to do so. Silicon feedstock is melted and, from that, thin-walled octagonal tubes of crystal about 18 feet tall are creat
26、ed by Monocrystalline Pullers. These tubes are transported to automated laser machines on which wafers are cut from the octagon faces. The wafers are 180 to 350 micrometer thick. Subsequently, the wafers are cleaned before being moved on to a cell line where each is given a positive and negative jun
27、ction. Since the late 1990s several companies have focused on this rung of the value chain ladder. Scan Wafer in Norway, Deutsche Solar in Germany and PV Crystalox in Germany and the UK are competing for the global leadership in the production of wafers. New entrants competing in this market are Sum
28、co and JFE of Japan, Pillar of Ukraine and Emix of France. Cell and module manufacture is, as the term describes, the manufacture of cells from silicon feedstock or from thin film, and the assembly of cells into modules. Solar cells are made from silicon wafers, by applying a variety of different me
29、tals and producing a silicon cell, a number of which are attached together in strings using solder-coated copper wire. These strings are assembled between two sheets of glass together with various plastic type materials which are then laminated to form a composite structure similar to a laminated wi
30、ndshield. A junction box, framing and wiring are attached to create a module approximately four feet by six feet that, when exposed to sunlight, will produce 300 watts of DC electricity. (Source: RWE Schott) 译文 太阳能光伏报告 资料来源 : ABS 能源研究 2009 作者:佚名 光伏产业价值链 光伏产业有三个基本 组件 ,构成了价值链,每个相互依存。有些公司专注于价值链其他各分部地址集
31、成太阳能光伏公司所有部门。这些组件是: 原料 太阳能光伏电池和组件 系统平衡 硅原料是目前最流行的太阳能电池的原料,虽然 在过去的数年 从 94降低至 87。体硅按结晶度和 晶体 产生的钢锭 、 带状或晶圆 的尺寸 分为多个类别 。 单晶硅( c - Si)往往利用提拉过 程。单晶晶圆 电池 是昂贵的,因为他们是从圆柱形锭切 而成。 聚硅 或多晶硅 (poly-Si or mc-Si)是由铸铝方锭 生成 。 他们比较便宜是因为他们生产成本低于单晶电池,但同时,他们的效率也比较低。 带状硅是由熔化的硅平面 绘图 薄膜 组成 ,他们有一个多晶结构。这些 电池 比多晶硅效率 低 , 但 由于这种方法
32、不需要锭锯切 , 大大减少 了硅的浪费 , 节省了生产成本。 新的结构:这些新化合物 是硅的特殊布置 ,如有机硅改性硅胶, 非晶硅 ,和纳米技术的组合,可以 显著 提高效率。 根据普罗米修斯研究所研究,在 2007 年电池生产中薄 膜替代厚水晶占了13%。 各种薄膜技术目前正在开发 一种 降低光吸收的太阳能电池制造所需材料的数量 的太阳能电池 。这种涂料 是厚水晶深度的百分之一 。 多晶硅 太阳能级 (SoG)有两个来源 :电子级( EG) 硅原料的 的集成电路( IC)产业生产半导体 的 生产商,以及最近开始 直接使用 冶金硅( Mg - Si 系) 作为原料的 几家公司。它通常被称为多结晶
33、硅,或聚硅 (poly-Si, or poly)。直到最近,太阳级来自非硅规格和浪费,无论在多晶硅提纯工艺,或在硅锭及硅片生产,但多晶硅生产企业现在使用的太阳能光伏太阳能级专门生产。 硅作 为半导体材料必须高度纯化 , 并且 电子级硅要求的净化度高于太阳能级。对于太阳能光伏电池使用的硅必须 是 99.9999的纯 度 (通常被称 为“六个九” 或 6N 的纯),而电子级硅是典型 9N 到 11n 的。 各 级硅必须经过很多加工,并通过几个阶段。第一阶段是从 硅矿石中开采石英 。在一个有碳 资 源 ( 如煤和焦炭 )的炉中加热石英 , 产生精炼的并会凝固的 液态硅。它被称为冶金硅( Mg - S
34、i 系), 具有 96 - 99的纯 度 , 被 钢铁工业 所 用 ,其中一 小部分 用于 电子半导体产业。反过来 数量的一小部分用于光伏行业 。最近光伏 与 电子 行业数量相当 ,但 是是 不同质量的一个过程。 镁硅可以通过多种方法加以完善,生产多晶硅,最常见的是西门子,或化学气相沉积法( CVD)目前 适用于 约 90的产品。它涉及三氯氢硅化学沉积气体 的加热棒 。最终的产品是 硅条,然后被打破成块状或者颗粒状的多晶 硅。其他的过程是流化床反应器( FBR)和 在 80 年代以及现在被挪威 一个专门的太阳能级原料制造商 REC 拥有的 联合碳化公司的发展过程 。 块 状 或粒状多晶硅 被
35、几个进程之一 精炼而成 。直拉( CZ) 和 浮区法生产 成单晶硅锭。定向凝固或铸造,形成带状, 和 表技术生产多晶结构。 需要完整步骤的电力创建晶体结构和花费的时间长短已经被看成进一步的板块 ,虽然 先进 的技术正在通过,如切片薄晶圆或改善超声波电镀性能。 薄膜光伏( TFPV)技术 各种薄膜技术正在从实验室到工厂开发,以减少光的吸收太阳能电池所需的材料数量。薄膜光伏采用薄膜涂层技术 并且 使用较少的材料,因为单元格的活动区域,通常只有 1 至 10 微米厚, 相比 100 至 300 微米 的厚膜 。另外一个优点是,薄膜电池可以在大面积的自动化,连续化生产工艺 中 生产。 最常见的薄膜技术
36、使用非晶硅( a - Si),碲化镉( CdTe),铜铟硒( CIS)和铜铟镓硒 ( CIGS)。其中,展示了铜铟镓硒在 最高实验室效率为 19.5的 环境中碲化镉 紧随其后。铜铟镓硒薄膜技术可以被放置在 广泛的 基板材料 中, 使得人们有可能制造非常轻便,灵活的金属和塑料太阳能电池等。客观地看待它,一个灵活的 CIGS 器件厚度大约 与 人类头发厚度相同,使它非常灵活和轻便。另一个专门技术采用薄膜填充与多结 电池 ,其中包括多个薄膜的砷化镓( GaAs)。砷化镓多结器件是迄今为止最高效的太阳能电池,在 达到一定 太阳能浓度 的 实验室条件下达到了创纪录的 40.7效率 。 但 是使它商业化还
37、需要 一些时间。 薄膜的 制造过程 和用于生 产太阳能级硅相比是非常不同的 。这是很难引入适应 太阳能电池制造技术的 生产铜铟镓硒的 公司。此外,个别厂家 正 在追求不同的进程。应用材料公司已经能够有效地运用制造平板电视和电脑屏幕 的 生产线 去 创建 2.2 米 X 2.6 米溅射玻璃的能力 。莫勒贝尔在印度已经取得认证启动这些生产 40 兆瓦 的 面板厂 , 相当于每年能为有 T - 45 兆瓦 的 太阳能 , 全球与在西班牙的生产线都开始于 2009 年初。微米的涂层薄板减少 了 电力的复杂性,并估计减少了 20 。 锭及硅片生产 锭和硅片生产通常集成在同一生产 装置 。 过去几年,在
38、PV 市场原料短缺这一领域,它 最有影响力, 包括 把中国拖进并确立为大型出口市场。 2008 年中国硅锭及硅片出货量达到 了 2,092 兆瓦,约 40的 电池 在该年度的年度销售,从 2006 年的 425 兆瓦增加到 2007 年的 1049 兆瓦 。价格已经下降,并会继续这样做。 硅原料熔化,并推而,约 18 英尺高的水晶薄壁八角形管是 Monocrytalline Pullers 创造的 。这些管子被输送到自动激光切割, 硅片 是从八角形 表面切割的 。晶圆是 180 至 350 微米厚。随后,晶圆清洗,然后被转移到一个 电池组 ,其中每个都有一个 正极 的和负面的交界。 20 世纪
39、 90 年代末以来的 几家公司 已经关注这 梯级价值链的阶梯。挪威 的扫描晶片 ,德国 的 太阳能光伏 晶片,并且德国 和英国 为了在生产晶圆领域成为全球领导地位而 竞争。在这个市场 , 新进入者 有日本的 Sumco 和 JFE 企业 ,乌克兰 的 Pillar 和法国 的 Emix。 电池和组件制造,正如这个词所描述的,从硅原料或薄膜电池制造, 并且电池 成模块组装。太阳能电池是由晶圆片上 ,运用各种不同的金属和生产硅电池,其中一些是 使用涂焊料铜线 连接在一起。这些 线 集合两张玻璃之间各种塑料类材料一起,然后复合,形成复合结构类似夹层风挡玻璃材料。一个接线盒,制定和接线连接到创建 一个模块大约四英尺六英尺的地方,当暴露在阳光下,将产生 300 瓦的直流电。 (来源:德国 RWE 肖特)