精选优质文档-倾情为你奉上实验六 常微分方程的Matlab解法一、实验目的1 了解常微分方程的解析解。2 了解常微分方程的数值解。3 学习掌握MATLAB软件有关的命令。二、实验内容一根长的无弹性细线,一段固定,另一端悬挂一个质量为的小球,在重力的作用下小球处于垂直的平衡位置。若使小球偏离平衡位置一个角度,让它自由,它就会沿圆弧摆动。在不考虑空气阻力的情况下,小球会做一定周期的简谐运动。利用牛顿第二定律得到如下的微分方程问该微分方程是线性的还是非线性的?是否存在解析解?如果不存在解析解,能否求出其近似解?三、实验准备MATLAB中主要用dsolve求符号解析解,ode45,ode23,ode15s求数值解。s=dsolve(方程1, 方程2,初始条件1,初始条件2 ,自变量) 用字符串方程表示,自变量缺省值为t。导数用D表示,2阶导数用D2表示,以此类推。S返回解析解。在方程组情形,s为一个符号结构。tout,yout=ode45(yprime,t0,tf,y0)