精选优质文档-倾情为你奉上三角函数式化简孙小龙所谓三角函数化简,就是灵活运用公式,对复杂的三角函数式进行变形,从而得到较为简单的三角函数式以便于进行问题讨论,所以三角函数式的化简是研究复杂三角函数式的基础。下面我们一起深入探究如何进行三角函数式化简。方法引导三角函数式化简通常是最让人头疼的一类题型,因为化简没有明确的方向,很难继续进行。其实化简只要遵守“三看”原则,即能顺利化简。一是看角,二是看名,三是看式子的结构和特征。(1) 看角的特点,充分利用角之间的关系,尽量向同角转化,利用已知角构建待求角;如倍角关系、半角关系、互余关系、互补关系等;(2) 看函数名的特点,向同名函数转化,弦切互化;(3) 看式子的结构特点,从整体出发,正用、逆用、变形应用这些公式。另外,根据式子的特点,还可以使用辅助角公式。了解了化简原则之后,下面我们开始化简了。例一 化简f(x)=2cosxsin(x+)sin2x+sinxcosx分析:首先先看角,式子中的角度不统一,所以首要任务是统一角度,根据式子的结构特点和3的特殊性,可以运用两角和的正弦公式