精选优质文档-倾情为你奉上高考数学圆锥曲线重要结论1、 定义:第一定义:平面内到两定点F1(-c,0),F2(c,0)的距离和为定值(大于两定点间的距离|F1F2|)2a的点的轨迹叫椭圆,两定点叫椭圆的焦点,两焦点间的距离叫焦距,与坐标轴的交点叫顶点。第二定义:平面内到一个定点F的距离与到定直线1的距离比为常数e(0e1)的点的轨迹,定点叫椭圆的焦点,定直线叫椭圆的准线; 引申定义:若一个圆C1内含于另一个圆C2,则与大圆内切与小圆外切的圆的圆心的轨迹为一椭圆,两圆的圆心为焦点,其长轴长为两圆半径之和; 在一个圆内有一点,则过该点且与已知圆相切的圆的圆心的点的轨迹为一椭圆,且其长轴长为已知圆的半径。 过两点的两条直线的斜率之积为一负常数m的点的轨迹为一椭圆(两点除外)。两定点为椭圆的顶点,两定点间的距离为长轴长。(-1m0时,焦点在x轴上;当 m-1时,焦点在y轴上)例:过点(-8,0),(8,0)的两直线11,12的斜率之积为-3/8,求其交点的轨迹。 将圆的横坐标(或纵坐标)拉伸或缩短为原来的m倍,该圆变成椭圆