精选优质文档-倾情为你奉上平面向量与三角形“四心”的应用问题三角形的外心,内心,重心及垂心,在高考中的考查是比较棘手的问题,先课程教材中所加的内容,更加引起我们的重视,尤其与平面向量结合在一起,那就更加难于掌握了。本文拟对与三角形的“四心”相关的平面向量问题加以归纳,供学习时参考1 课本原题例、已知向量满足条件,求证:是正三角形分析对于本题中的条件,容易想到,点是的外心,而另一个条件表明,点是的重心故本题可描述为,若存在一个点既是三角形的重心也是外心,则该三角形一定是正三角形在1951年高考中有一道考题,原题是:若一三角形的重心与外接圆圆心重合,则此三角形为何种三角形?与本题实质是相同的 显然,本题中的条件可改为2 高考原题例、O是平面上一 定点,A、B、C是平面上不共线的三个点,动点P满足 则P的轨迹一定通过ABC的( )A外心B内心C重心D垂心分析已知等式即,设,显然都是单位向量,以二者为邻边构造平行四边形,则结果为菱形,故为的平分线,选例、的外接圆的圆心