1、沥青路面水损害的治理措施摘要:从高速公路路面水损害的表面现象出发,分析其产生的机理,针对其破坏的机理提出如何防治,从而减少路面水损害的发生。 关键词:沥青路面;水损害;治理措施 Abstract: starting from the surface of highway pavement water damage, and to analyze its mechanism, its destruction mechanism is put forward how to prevention and control, thereby reducing the occurrence of road
2、 surface water damage. Key words: asphalt pavement; Water damage; Control measures. 中图分类号:U416.217 文献标识码:A 文章编号:2095-2104(2013) 沥青路面的水损害是沥青路面存在水分的条件下,经受荷载和温度的反复作用,使沥青膜逐渐从集料表面剥离,并导致集料之问的粘结力丧失,而发生路面逐渐出现麻面、松散、坑槽等病害。 在我国南方多雨地区,水侵入路面结构内部的机会较多,行车造成的动水压力和抽吸力会使沥青薄膜剥落,并导致路面产生严重的水损害。北方冰冻地区,虽然降雨量小,但冻胀和翻浆同样会对路面
3、造成严重破坏。特别在冬春季节,降雪和降水频繁,水渗入路面结构层内部后,夜间结冻,第二天白天化冻,夜间又结冻。这种连续的冻融循环不断加剧路面的破坏。因此,采取有效措施减轻并彻底解决水损害现象,是当前高速公路沥青路面早期病害研究所面临的主要问题。 一、水损坏现象的类型及其作用机理 沥青路面较为普遍的水损害现象有麻面、松散、掉粒、坑洞、唧浆、网裂、辙槽等。 1.松散类:路表麻面、松散、掉粒、坑洞沥青面层在孔隙水压力的反复作用下,使沥青膜从集料表面剥落、混合料中的集料相互之间丧失粘结力而逐渐变软直至松垮,导致麻面、松散现象;在局部松散处,松散的集料颗粒逐渐掉粒、流失进而形成大小不一的坑洞。 2.裂缝类
4、:唧浆、网裂、坑洞半刚性基层基顶结合料与从路表连通孔隙及裂缝处下渗的水混合,在行车荷载的反复作用下,产生的高速动水压力冲刷基顶形成灰浆并从裂缝中被挤压而出形成了唧浆现象;随着基层结合料的逐渐流失,面层也随着底部脱空现象的产生而形成沉陷、网裂,进而发展成坑洞。 3.变形类:辙槽在行车荷载作用下,滞留在面层内的水使集料特别是粗集料表面裹覆的沥青膜逐渐剥落,沥青混合料强度不断损失直至完全松散。行车轮迹带下不仅出现了压缩变形现象,而且产生了严重的剪切破坏现象,轮下松散的沥青混合料向两侧挤出并鼓起,在轮迹带下形成车辙。辙槽内有时还伴随着唧浆和网裂现象。 4.冻融循环破坏在冰冻地区或季节性冰冻地区,由于水
5、凝聚结冰时体积增大,在沥青混合料内部会产生很大的膨胀力,致使混合料内部粘结力下降;而当其融化时,又滞留于路面层内,在行车荷载作用下加速沥青膜的剥落。在路表,冰雪融水进入沥青混合料内部,在行车荷载和冻融循环的反复作用下产生破坏。而在下面层,当基础有较多的细粒土和孔隙时,冬季特有的毛细水使水分逐渐积聚在基层顶面,春融期过饱和的水进入下面层孔隙,在荷载反复作用下产生剥落现象和基顶冲刷。 总的来说,水损害的根本原因在于水的作用致使沥青对集料的粘附性能丧失,沥青膜从矿料表面脱落,而造成这种结果的两个关键性因素是水和外力的作用。 3、水损害的预防 调查表明,造成沥青路面水损害破坏的非常复杂,可以归结为沥青
6、混合料空隙率过大、压实度不足、路面渗水、路面厚度偏薄、沥青混合料抗水损害能力不足、排水设施不完善等。水损害的预防和治理是一项非常复杂的工作,它涉及到材料的级配,结构层的设计,施工的工艺水平以及通车后的长期养护。因此,必须从设计、施工和养护三方面综合考虑采取多种措施,才能有效预防水损害现象的产生。具体如下: (1)应该考虑如何使水不容易侵人路面结构层。例如,防止中央分隔带植草植树后水侵人路面,有的高速公路将中央分隔带封闭后,在其上摆大盆栽树是一种值得提倡的措施;防止凸型中央分隔带两侧缘石与面层沥青混凝土连接处粘结不好而透水,如京津唐高速公路那样不作凸型中央分隔带并取消路缘石,消除水透人面层的这一
7、途径。此外,当出现纵向和横向裂缝时应该及时封闭,防止水沿裂缝侵人结构层。为较好的防止水侵人,可以使面层的各层都采用空隙率不大于 5 的密实沥青混凝土。实践表明,沥青面层中那一层空隙率大,一旦水进人,那一层就会产生水损害。某高速公路沥青面层的表层和中层都是密实的 I 型沥青混凝土,但底面层是空隙率较大的型沥青混凝土,开放交通不久,在某些路段上产生了早期纵向裂缝。雨水从纵向裂缝进人并滞留在底面层,使沥青混凝土的强度显着减弱。虽然初期沥青面层尚未产生其他明显的水损害现象,但随着开放交通时间增长,路面逐渐产生了网裂等表面破损。因此,在保证面层混合料高温稳定性、低温抗裂性和抗滑性的基础上,应该尽量减小各
8、层混合料的空隙率,最好全部面层结构都采用空隙率不大于 5的密实沥青混凝土。 (2)应该提高沥青与矿料的粘结力。当水进人沥青混合料后,在快速重载车辆作用下容易产生沥青剥落现象。为减轻沥青剥落,改善沥青混凝土的水稳定性和耐久性,需要增强沥青与矿料的粘结力。有关研究建议,为加强粘结力应该保证中面层和在快速重载车辆作用下容易产生沥青剥落现象。为减轻沥青剥落,改善沥青混凝土的水稳定性和耐久性,需要增强沥青与矿料的粘结力。有关研究建议,为加强粘结力应该保证中面层和底面层的粘结力不小于 4 级,表面层的粘结力不小于 5 级。 (3)应该提高混合料压实标准,沥青混凝土的压实度不仅对沥青混凝土的物理力学性质有着
9、重要的影响,而且是决定现场空隙率的主要因素。对于配合比设计空隙率为 4的同一种沥青混凝土,在不同压实度下的现场空隙率有明显差别。在压实度为 96时,现场空隙率接近 8;在压实度为 98时,现场空隙率接近 6,前者的渗透系数明显大于后者。所以在实际施工中,要严格保证压实度达到设计标准,表面层压实度不小于 98,中面层和底面层不小于 97。 (4)应该在路面结构层中设置排水层和防水层。从我国沥青路面的早期破坏来看,往往表面水还没有渗透到中面层或下面层,表面层或中面层就已经开始破坏。鉴于当前我国高速公路建设中,很多人担心沥青面层薄了容易破坏,愿意用厚的沥青面层。在这种情况下,为了防止水渗人到面层下部
10、造成破坏,可考虑将防水层设在表面层下面。同时,应该在基层顶面设置多孔隙沥青混合料排水层,使水能尽快排出路面结构层。三、沥青路面抗水损害技术措施 1.路面结构层均采用水稳定性好的密实型沥青混凝土 实践证明,沥青路面结构层中仅有一层是密实型(I 型)的沥青混凝土或仅设一层沥青砂来防止水损害远不能满足要求。一旦水通过各种途径进入到空隙率较大的结构层中,便会滞留于其中,使强度显著降低,并随着交通量的增加,出现水损害现象。 2.改善沥青与矿料之间的粘附性 为了减轻沥青路面的水损害,改善与提高沥青混合料的水稳定性与耐久性,需要增加沥青与矿料之间的粘附性。经验证明,我国目前所使用的表面层石料与沥青的粘附性都
11、比较差,不能满足技术要求,必须采取抗剥落措施,以改善矿料与沥青之间的粘附性。目前我国常用的抗剥离措施主要是添加抗剥落剂。 3.提高沥青混凝土压实度标准,增加现场空隙率指标 国内外大量研究表明,7%的现场空隙率是沥青路面是否产生早期水损害的分水岭,美国 SHRP 研究成果也提出 4%的设计空隙率是最佳的选择。若仍按 96%的压实度予以控制,其现场空隙率将达到 8%,无法满足水稳定性的要求,应提高压实度标准;而且在提高压实度标准的同时,增设现场空隙率作为施工的控制指标。 4.设置路面结构内部排水系统 设置良好的路面结构内部排水系统,迅速排除渗入路面结构内的水分,避免自由水在路面结构层中积滞的时间过长,从而改善路面的使用性能的措施能够从根本上解决沥青路面的水损害问题。 小结 沥青路面产生水损坏的原因虽然复杂多样,但只要加以重视,深入研究、控制好各个环节,如结构层的选择、材料的选用,施工的严格控制等,做到精心设计、严格施工、勤于管理,水损坏是可以减少和防治的。 参考文献: 1、 沙庆林.高速公路沥青路面早期破坏现象及预防.北京:人民交通出版社.2001.