1、相似三角形知识点总结知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形相似多边形对应边长度的比叫做相似比(相似系数)知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段 的长度分别为 ,那么就说这两条线段的比是ba, nm,,或写成 注:在求线段比时,线段单位要统一。nmbanmba:(2)在四条线段 中,如果 的比等于 的比,那么这四条线段 叫做成dc,和 dc和 dcba,比例线段,简称比例线段注:比例线段是有顺序的,如果说 是 的第四比例项,那a,
2、么应得比例式为: a、d 叫比例外项,b、c 叫比例acb()abcd在 比 例 式 : : 中 ,内项, a、c 叫比例前项,b、d 叫比例后项,d 叫第四比例项,如果 b=c,即 那abd: :么 b 叫做 a、d 的比例中项, 此时有 。2a(3)黄金分割:把线段 分成两条线段 ,且使 是 的比例中AB)(,BCAABC和项,即 ,叫做把线段 黄金分割,点 叫做线段 的黄金分割点,其中2AC0.618 即 简记为:15512CAB512长 短 全 长注:黄金三角形:顶角是 360的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1)
3、基本性质: ; bcadcba: 2:abcac(2)反比性质(把比的前项、后项交换): d(3)等比性质:如果 ,那)0(nfbnmfedcb么 anfdbmeca可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立如: ;其中 bafdbecafedcbafedcba 3232 032fd知识点 4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. 由 DEBC 可得: ACEBDAECDB或或结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比
4、例. 三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知 ADBECF, 可得 等. ABDEBCEFABCCFADEF或 或 或 或知识点 5 三角形相似的判定方法1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似2、平行法:平行于三
5、角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似3、判定定理 1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似简述为:两角对应相等,两三角形相似4、判定定理 2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似简述为:两边对应成比例且夹角相等,两三角形相似5、判定定理 3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似简述为:三边对应成比例,两三角形相似6、判定直角三角形相似的方法:射 影 定 理 : 在 直 角 三 角 形 中 , 斜 边 上 的 高 是 两 直
6、角 边 在 斜 边 上 射 影 的 比 例 中 项 。 每 一 条直 角 边 是 这 条 直 角 边 在 斜 边 上 的 射 影 和 斜 边 的 比 例 中 项 。如 图 , Rt ABC 中 , BAC=90, AD 是 斜 边 BC 上 的 高 ,FEDCBAEAB CDDB CA则 AD2=BDDC, AB2=BDBC , AC2=CDBC 。知识点 6 相似三角形常见的图形相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中1=2,则ADEABC 称为“斜交型”的相似三角形。 (有“反 A 共角型”、“反 A 共角共边型”
7、、 “蝶型”)(3) 如图:称为“垂直型” (有“双垂直共角型” 、 “双垂直共角共边型(也称“射 影 定 理 型 ”) ”“三垂直型” )(4)如图:1=2,B=D,则ADEABC,称为“旋转型”的相似三角形。知识点 7 相似三角形的性质 EE1242 E CAB D E AB C(D)EA DCB(1) EAB CD(3)DB CAE (2) CD EAB(1)相似三角形对应角相等,对应边成比例(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比(3)相似三角形周长的比等于相似比(4)相似三角形面积的比等于相似比的平方 知识点 8 相似多边形的性质(1)相似多边形周长比,
8、对应对角线的比都等于相似比(2)相似多边形中对应三角形相似,相似比等于相似多边形的相似比(3)相似多边形面积比等于相似比的平方注意:相似多边形问题往往要转化成相似三角形问题去解决,因此,熟练掌握相似三角形知识是基础和关键知识点 9 位似图形有关的概念与性质及作法1.如果两个图形不仅是相似图形,而且每组对应顶点的连线都交于一点,那么这样的两个图形叫做位似图形. 2. 这个点叫做位似中心,这时的相似比又称为位似比. 注: (1) 位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于一点. (2) 位似图形一定是相似图形,但相似图形不一定是位似图形. (3) 位似图形的对应边互相平行
9、或共线.3.位似图形的性质: 位似图形上任意一对对应点到位似中心的距离之比等于相似比. 注:位似图形具有相似图形的所有性质.4. 画位似图形的一般步骤: (1) 确定位似中心(位似中心可以是平面中任意一点) (2) 分别连接原图形中的关键点和位似中心,并延长(或截取). (3) 根据已知的位似比,确定所画位似图形中关键点的位置. (4) 顺次连结上述得到的关键点,即可得到一个放大或缩小的图形. 注:位似中心可以是平面内任意一点,该点可在图形内,或在图形外,或在图形上(图形边上或顶点上)。外位似:位似中心在连接两个对应点的线段之外,称为“外位似”(即同向位似图形)内位似:位似中心在连接两个对应点的线段上,称为“内位似”(即反向位似图形)(5) 在平面直角坐标系中,如果位似变换是以原点O为位似中心,相似比为k(k0),原图形上点的坐标为(x,y),那么同向位似图形对应点的坐标为(kx,ky), 反向位似图形对应点的坐标为(-kx,-ky),