1、1 丰台区 20162017 学年度第二学期期末练习 初二数学 考 生 须 知 1. 本试卷共 6 页,共三道大题,26 道小题。满分 100 分。考试时间 90 分钟。 2. 在试卷和答题卡上认真填写学校名称、姓名和考号。 3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 4. 在答题卡上,选择题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。 5. 考试结束,将本试卷、答题卡和草稿纸一并交回。 一、选择题(本题共 30 分,每小题 3 分) 第 1-10 题均有四个选项,符合题意的选项只有一个 1在平面直角坐标系 xOy 中,点 P(2, 3)关于原点 O 对称的点的坐标是 A
2、 (2,3) B ( 2,3) C ( 2, 3) D (2, 3) 2如果一个多边形的每个内角都是 120,那么这个多边形是 A五边形 B六边形 C七边形 D八边形 3下面四个图案依次是我国汉字中的“福禄寿喜”的艺术字图这四个图案中是中心对称图形的是 A B C D 4方程 的解是x1 Ax = 0 Bx = 2 Cx 1 = 0,x 2 = 1 Dx 1 = 0,x 2 = 2 5数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们 10 次还原魔方所用时 间的平均值 与方差 : S 甲 乙 丙 丁 (秒)x30 30 28 282 1.21 1.05 1.21 1.05
3、要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择 A甲 B乙 C丙 D丁 6矩形 ABCD 中,对角线 AC,BD 相交于点 O,如果ABO=70 ,那么AOB 的度数是 A40 B55 C60 D70 7用配方法解方程 ,原方程应变形为210x A B C D2(1)x2()x2(1)x2(1)x 2 8德 国 心 理 学 家 艾 宾 浩 斯 ( H.Ebbinghaus) 研 究 发 现 , 遗 忘 在 学 习 之 后 立 即 开 始 , 遗 忘 是 有 规 律 的 他 用 无 意 义 音 节 作 记 忆 材 料 , 用 节 省 法 计 算 保 持 和 遗 忘 的 数 量 通
4、 过 测 试 , 他 得 到 了 一 些 数 据 , 根 据 这 些 数 据 绘 制 出 一 条 曲 线 , 即 著 名 的 艾 宾 浩 斯 记 忆 遗 忘 曲 线 , 如 图 该 曲 线 对 人 类 记 忆 认 知 研 究 产 生 了 重 大 影 响 小 梅 观 察 曲线,得出以下四个结论: 记忆保持量是时间的函数 遗忘的进程是不均匀的,最初遗忘速度快,以后逐渐减慢 学习后 1 小时,记忆保持量大约为 40% 遗忘曲线揭示出的规律提示我们学习后要及时复习 其中错误的结论是 A B C D 9关 于 x 的 一 元 二 次 方 程 有 两 个 实 数 根 , 那 么 实 数 k 的 取 值 范
5、 围 是210kx A B 且 1k 1k0k C 且 D0k 10如图 1 所示,四边形 ABCD 为正方形,对角线 AC,BD 相交于点 O,动点 P 在正方形的边和对角线 上匀速运动. 如果点 P 运动的时间为 x,点 P 与点 A 的距离为 y,且表示 y 与 x 的函数关系的图象 大致如图 2 所示,那么点 P 的运动路线可能为 图 1 图 2 AAB C A BABC D CADOA DAOBC 二、填空题(本题共 18 分,每小题 3 分) 11函数 中,自变量 的取值范围是 12yxx 12在ABC 中,D,E 分别是边 AB,AC 的中点,如果 DE=10,那么 BC= 13
6、 “四个一”活动自 2014 年 9 月启动至今,北京市已有 60 万中小学生参观了天安门广场的升旗仪式. 下图 是 利 用 平 面 直 角 坐 标 系 画 出 的 天 安 门 广 场 周 围 的 景 点 分 布 示 意 图 . 如 果 这 个 坐 标 系 分 别 以 正 东 、 正 北 方 向 为 x 轴 、 y 轴 的 正 方 向 , 表 示 故 宫 的 点 的 坐 标 为 ( 0, 1) , 表 示 中 国 国 家 博 物 馆 的 点 的 坐 标 为 (1, 1) ,那么表示人民大会堂的点的坐标是 14在四边形 ABCD 中,对角线 AC,BD 相交于点 O如果 ABCD,请 你添加一个
7、条件,使得四边形 ABCD 成为平行四边形,这个条件可以 是 (写出一种情况即可) 中中中中中中 中中中中中中 北 OBCDA 3 已知:AOB. 求作:射线 OE,使 OE 平分AOB. 作法:如图, (1)在射线 OB 上任取一点 C; (2)以点 O 为圆心,OC 长为半径作弧, 交射线 OA 于点 D; (3)分别以点 C,D 为圆心,OC 长为 半径作弧,两弧相交于点 E; (4)作射线 OE 所以射线 OE 就是所求作的射线 15在 平 面 直 角 坐 标 系 xOy 中 , 一 次 函 数 和 的图象如图所示,则ykx3 关于 x 的一元一次不等式 的解集是 .3k 16下面是“
8、作已知角的平分线”的尺规作图过程. 请回答:该作图的依据是 三、解答题(本题共 52 分,第 17 题 4 分,第 18-24 题每小题 5 分,第 25 题 6 分,第 26 题 7 分) 17解方程: 2430x 18在 平 面 直 角 坐 标 系 xOy 中 , 已 知 一 次 函 数 的图象与 x 轴交于点 ,与 轴交于点 12yxAyB (1)求 , 两点的坐标;AB (2)在给定的坐标系中画出该函数的图象; (3)点 M( 1,y 1) ,N (3,y 2)在该函数的图象上,比较 y1 与 y2 的大 小. O BAED CABO y=-x+3 y=kxyO 31213214 4
9、yO x 312123 32132 4 19已知:如图,E,F 为 ABCD 的对角线 BD 上的两点,且 BE=DF 求证:AE CF 20阅读下列材料: 为引导学生广泛阅读古今文学名著,某校开展了读书月活动. 学生会随机调查了部分学生平均 每周阅读时间的情况,整理并绘制了如下的统计图表: 学生平均每周阅读时间频数分布表 请根据以上信息,解答下列问题: (1)在频数分布表中,a = _,b = _; (2)补全频数分布直方图; (3)如 果 该 校 有 1 600 名 学 生 , 请 你 估 计 该 校 平 均 每 周 阅 读 时 间 不 少于 6 小时的学生大约有 人. FEA BCD 8
10、6420 中1208040 26 中/中1012 平均每周阅读 时间 x(时) 频数 频率02 10 0.0254 60 0.1506x a 0.2008 110 b10 100 0.2502x 40 0.100 合计 400 1.000 学生平均每周阅读时间频数分布直方图 5 21“在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.“互联网+” 时代,中国的在线教育得到迅猛发展. 请根据下面张老师与记者的对话内容,求 2014 年到 2016 年 中国在线教育市场产值的年平均增长率. 22如图,在四边形 中, , ,我们把这种两组邻边分别相等的四边形叫做筝ABCDCB
11、D 形 根据学习平行四边形性质的经验,小文对筝形的性质进行了探究 (1)小文根据筝形的定义得到筝形边的性质是_; (2)小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”. 请你帮他将证明过程补充完整. 已知:如图,在筝形 中, , .ABCDCBD 求证:_ 证明: (3)小文连接筝形的两条对角线,探究得到筝形对角线的性质 是_ (写出一条即可) BADC 在线教育打破了时空限制, 可碎片化学习,可以说具有效 率高、方便、低门槛、教学资 源丰富的特点.那么这两年中国 在线教育市场产值如何呢? 根据中国产业信息网数据 统计及分析,2014 年中国在线 教育市场产值约为 1
12、000 亿元, 2016 年中国在线教育市场产值 约为 1 440 亿元. 6 23已知关于 x 的一元二次方程 210xm (1)求证:此方程有两个不相等的实数根; (2)选择一个 m 的值,并求出此时方程的根 24小明租用共享单车从家出发,匀速骑行到相距 2 400 米的邮局办事. 小明出发的同时,他的爸爸以 每分钟 96 米的速度从邮局沿同一条道路步行回家,小明在邮局停留了 2 分钟后 沿 原 路 按 原 速 返 回 . 设 他 们 出 发 后 经 过 t(分)时,小明与家之间的距离为 s1(米) ,小明爸爸与家之间的距离为 s2(米) ,图中折线 OABD,线 段 EF 分别表示 s1
13、,s 2 与 t 之间的函数关系的图象 . (1)求 s2 与 t 之间的函数表达式; (2)小明从家出发,经过多长时间在返回途中追上爸爸? E240O FDCB t/中10As/中 7 25已知:如图,正方形 ABCD 中,点 F 是对角线 BD 上的一个动点. (1)如图 1,连接 AF,CF,直接写出 AF 与 CF 的数量关系; (2)如图 2,点 E 为 AD 边的中点,当点 F 运动到线段 EC 上时,连接 AF,BE 相交于点 O. 请 你 根 据 题 意 在 图 2 中 补 全 图 形 ; 猜 想 AF 与 BE 的 位 置 关 系 , 并 写 出 证 明 此 猜 想 的 思
14、路 ; 如果正方形的边长为 2,直接写出 AO 的长.A DF B C CDABE 图 1 图 2 26在平面直角坐标系 xOy 中,如果点 A,点 C 为某个菱形的一组对角的顶点,且点 A,C 在直线 y = x 上,那么称该菱形为点 A,C 的“极好菱形”. 下图为点 A,C 的“极好菱形”的一个示意图. 已知点 M 的坐标为(1,1) ,点 P 的坐标为(3,3). (1)点 E(2,1) ,F(1,3) ,G (4,0)中,能够成为点 M,P 的“极好菱形”的顶点的是 ; (2)如 果 四 边 形 MNPQ 是 点 M, P 的 “极 好 菱 形 ”. 当点 N 的坐标为(3,1)时,
15、求四边形 MNPQ 的面积; 当 四 边 形 MNPQ 的 面 积 为 8, 且 与 直 线 y = x + b 有 公 共 点 时 , 写 出 b 的 取 值 范 围 .y=x DCB A4 4 44 123 12332 213xOy 8 丰台区 20162017 学年度第二学期期末练习 初二数学参考答案 选择题(本题共 30 分,每小题 3 分) 题号 1 2 3 4 5 6 7 8 9 10 答案 B B C D D A A C C A 二、填空题(本题共 18 分,每小题 3 分) 11. ; 12.20; 13. ; 14. AB=CD 或 ADBC 等,答案不唯一; 15. ;2x
16、1, 1x 16.四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角,两点确定一条直线. 三、解答题(本题共 52 分,第 17 题 4 分,第 18-24 题每小题 5 分,第 25 题 6 分,第 26 题 7 分) 17. 解: , 2 分(1)30x 4 分2,. 其他解法相应给分. 18.解:(1 )令 ,则 ;yx 令 ,则 .01 点 A 的坐标为 ,1 分(2,) 点 B 的坐标为 . 2 分 (2 )如图: 4 分 (3 ) .5 分12.y 19.证明:连接 AC 交 BD 于点 O, 连接 AF,CE. 四边形 ABCD 是平行四边形, OBOD ,OAOC (平
17、行四边形的对角线互相平分) 2 分 BE =DF,OBBE OD DF 即 OEOF3 分 四边形 AECF 是平行四边形 (对角线互相平分的四边形是平行四边形)4 分 AE CF 5 分 其他证法相应给分. OD CBA EF y=12x+1yO x3121221 9 20.解:(1)80,0.275; 2 分 (2) 4 分 (3)1000 5 分 21.解:设 2014 年到 2016 年中国在线教育市场产值的年平均增长率是 , 1 分x 依题意,得: , 3 分210140x 解得: .4 分. , (舍)12.x 答:2014 年到 2016 年中国在线教育市场产值的年平均增长率是
18、20% .5 分 22.( 1) 筝形的两组邻边分别相等. 1 分 (2 ) B D 2 分 证明:连接 AC , , ,ACA (SSS).3 分 BD 4 分 (3 )筝形的两条对角线互相垂直 (答案不唯一)5 分. 23.( 1)证明:= = = , 2 分214()m24m213 无论 m 取何值时, ,0 0,即0. 213 此方程有两个不相等的实数根. 3 分 (2 )解:当 时,原方程为 , 5 分0m210x12,.x 24.解:(1 )由题意,可知 ,即 . 2 分296+4ts29640st (2 )由题意,可知 A(10,2400) ,B(12,2400) ,D (22,
19、0). 设直线 BD 的函数关系式为 ,1ktb 1210中/601020482中2468 10 .12=40kb24058k15280st 当 时, .解得 .12s96ttt 小明从家出发,经过 20 分钟在返回途中追上爸爸. 5 分 25.( 1)解: AF=CF.1 分 (2 )解: 补全图形: 2 分 .3 分AFBE 证明思路如下: (i)由四边形 ABCD 是正方形, 可得 ADCD,ADB CDB. 进而可得 .从而得到 12.DCF (ii)由 E 为正方形 ABCD 的 AD 边的中点,可证 .ABEDC 从而得到3 4. (iii)由2+4=90可知1+3=90 ,进而可得AOE=90. 即 .5 分AFB . 6 分25 26.解:(1 )F,G. 2 分 (2 ) M( 1,1) ,P (3 ,3) ,N(3 ,1) , , . 2MNP 四边形 MNPQ 是菱形,四边形 MNPQ 是正方形. .5 分4NQS四 边 形 . 7 分b 43 21 CDABEFO