山西省名校联考2016届高三上期末数学试卷(文)含答案解析.doc

上传人:丁** 文档编号:4186741 上传时间:2019-10-02 格式:DOC 页数:22 大小:577.50KB
下载 相关 举报
山西省名校联考2016届高三上期末数学试卷(文)含答案解析.doc_第1页
第1页 / 共22页
山西省名校联考2016届高三上期末数学试卷(文)含答案解析.doc_第2页
第2页 / 共22页
山西省名校联考2016届高三上期末数学试卷(文)含答案解析.doc_第3页
第3页 / 共22页
山西省名校联考2016届高三上期末数学试卷(文)含答案解析.doc_第4页
第4页 / 共22页
山西省名校联考2016届高三上期末数学试卷(文)含答案解析.doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、第 1 页(共 22 页) 2015-2016 学年山西省名校联考高三(上)期末数学试卷(文科) 一、本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要 求的. 1设集合 A=x|3x4,集合 B=x|xlog 29,则 AB 等于( ) A (3, log29) B ( 3,4 ) C ( ,log 29) D (,4) 2复数 在复平面上所对应的点位于( ) A第一象限 B第二象限 C第三象限 D第四象限 3已知向量 =(3,4) , =(2,x) ,若 =2| |,则实数 x 等于( ) A1 B1 C2 D11 4已知椭圆 + =1 的上顶点为 A、右

2、顶点为 B,直线 x2y=0 过线段 AB 的中点,则 实数 k 等于( ) A2 B3 C4 D6 5已知 ( ,0) ,且 cos= ,则 sin(+2 )等于( ) A B C D 6从集合 A=1, ,2中随机选取一个数记为 k,从集合 B= , ,2中随机选取一 个数记为 a,则 ak1 的概率为( ) A B C D 7如图是一个程序框图,则输出 s 的值是( ) A5 B7 C9 D11 第 2 页(共 22 页) 8已知 A、B、C 三点在球 O 的球面上,AB=BC=CA=3,且球心 O 到平面 ABC 的距离等 于球半径的 ,则球 O 的表面积为( ) A12 B16 C1

3、8 D 9已知函数 f(x)= x3(1+ )x 2+2bx 在区间(3,1)上是减函数,则实数 b 的取值范 围是( ) A (,3 B ( ,1 C1,2 D3,+) 10已知函数 f(x)=2cos( x+)+1(0,| | ) ,其图象与直线 y=3 相邻两个 交点的距离为 ,若 f(x) 1 对x( , )恒成立,则 的取值范围是( ) A , B , 0C ( , D0, 11如图是一个几何体的三视图,则该几何体的体积为( ) A B C23 D24 12已知函数 f(x)= ,且函数 g(x)=log a( x2+x+2) (a0,且 a1)在 ,1 上的最大值为 2,若对任意

4、x11,2,存在 x20,3,使得 f(x 1)g(x 2) , 则实数 m 的取值范围是( ) A (, B ( , C ,+) D ,+ 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分. 13在ABC 中,A=60 ,2asinB=3,则 b= 14已知函数 f(x)=log 3x+x+m 在区间( ,9)上有零点,则实数 m 的取值范围是 第 3 页(共 22 页) 15如果实数 x,y 满足条件 ,则 z= 的最大值为 16已知双曲线 C: =1(a0,b0)和圆 O:x 2+y2=b2过双曲线 C 上一点 P 引 圆 O 的两条切线,切点分别为 A,B若PAB 可为正三

5、角形,则双曲线 C 的离心率 e 的 取值范围是 三、解答题:本大题共 5 小题,共 70 分,解答应写出文字说明,证明过程或演算步骤. 17设公比不为 1 等比数列a n的前 n 项和为 Sn,已知 a3 是 a1 和 a2 的等差中项, S4+a2= (1)求 an; (2)已知等差数列b n的前 n 项和 Tn,b 1=a3,T 7=49,求 + + 18为了解某班学生喜好体育运动是否与性别有关,对本班 50 人进行了问卷调查得到了如 下的列联表: 已知喜好体育运动与否,采用分层抽样法抽取容量为 10 的样本,则抽到喜好体育运动的人 数为 6 (1)请将上面的列联表补充完整; (2)能否

6、在犯错误的概率不超过 0.005 的前提下认为喜好体育运动与性别有关?说明你的 理由; 喜好体育运动 不喜好体育运动 合计 男生 5 女生 10 合计 50 下面的临界值表供参考: P(k 2k ) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828 (参考公式:K 2= ,其中 n=a+b+c+d) 19如图,直三棱柱 ABCA1B1C1 中,D 、E 分别是棱 BC、AB 的中点,点 F 在棱 CC1 上, 已知 AB=AC,AA 1=3,BC=CF=2 (1)求证:C 1E

7、平面 ADF; (2)若点 M 在棱 BB1 上,当 BM 为何值时,平面 CAM平面 ADF? 第 4 页(共 22 页) 20平面直角坐标系 xoy 中,直线 xy+1=0 截以原点 O 为圆心的圆所得的弦长为 (1)求圆 O 的方程; (2)若直线 l 与圆 O 切于第一象限,且与坐标轴交于 D,E,当 DE 长最小时,求直线 l 的方程; (3)设 M,P 是圆 O 上任意两点,点 M 关于 x 轴的对称点为 N,若直线 MP、NP 分别交 于 x 轴于点(m,0)和(n, 0) ,问 mn 是否为定值?若是,请求出该定值;若不是,请 说明理由 21已知函数 f(x)= x2(2a+2

8、)x+(2a+1)lnx (1)若曲线 y=f(x)在点(2,f(2) )处的切线的斜率小于 0,求 f(x)的单调区间; (2)对任意的 a , ,函数 g(x)=f(x) 在区间1,2上为增函数,求 的取 值范围 选考题(请考生从 22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分)选 修 4-1:几何证明选讲 22如图,AB 是圆 O 的直径,C 为圆周上一点,过 C 作圆 O 的切线 l,过 A 作直线 l 的 垂线 AD,D 为垂足,AD 与圆 O 交于点 E (1)求证:ABDE=BC CE; (2)若 AB=8,BC=4 ,求线段 AE 的长 选修 4-4:坐标系

9、与参数方程 23已知极点与直角坐标系的原点重合,极轴与 x 轴的正半轴重合,圆 C 的极坐标方程是 =asin,直线 l 的参数方程是 (t 为参数) (1)若 a=2,直线 l 与 x 轴的交点是 M,N 是圆 C 上一动点,求 |MN|的最大值; (2)直线 l 被圆 C 截得的弦长等于圆 C 的半径的 倍,求 a 的值 第 5 页(共 22 页) 选修 4-5:不等式选讲 24已知实数 a、b 满足:a 0,b0 (1)若 xR,求证:|x+a|+|xb|2 (2)若 a+b=1,求证: + + 12 第 6 页(共 22 页) 2015-2016 学年山西省名校联考高三(上)期末数学试

10、 卷(文科) 参考答案与试题解析 一、本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要 求的. 1设集合 A=x|3x4,集合 B=x|xlog 29,则 AB 等于( ) A (3, log29) B ( 3,4 ) C ( ,log 29) D (,4) 【考点】并集及其运算 【分析】由 A 与 B,求出两集合的并集即可 【解答】解:A=( 3,4) ,B=( ,log 29,且 4=log224=log216log 29, AB=(,4) , 故选:D 2复数 在复平面上所对应的点位于( ) A第一象限 B第二象限 C第三象限 D第四象限 【考点】复数

11、代数形式的乘除运算 【分析】直接由复数代数形式的乘除运算化简复数 ,得到复数 在复平面上所对 应的点的坐标,则答案可求 【解答】解:由 = , 则复数 在复平面上所对应的点的坐标为:(3, 2) ,位于第三象限 故选:C 3已知向量 =(3,4) , =(2,x) ,若 =2| |,则实数 x 等于( ) A1 B1 C2 D11 【考点】平面向量数量积的运算 第 7 页(共 22 页) 【分析】进行数量积的坐标运算求出 ,根据坐标求出 ,从而由 便可 建立关于 x 的方程,解方程便得实数 x 的值 【解答】解: ; 由 得: 6+4x=10; x=1 故选:B 4已知椭圆 + =1 的上顶点

12、为 A、右顶点为 B,直线 x2y=0 过线段 AB 的中点,则 实数 k 等于( ) A2 B3 C4 D6 【考点】椭圆的简单性质 【分析】由椭圆性质先分别求出 A,B 的坐标,从而求出线段 AB 的中点坐标,代入到直 线方程中能求出实数 k 的值 【解答】解:椭圆 + =1 的上顶点为 A、右顶点为 B, A(0, ) ,B( ,0) , 线段 AB 的中点 M( , ) , 直线 x2y=0 过线段 AB 的中点, 2 =0, 解得 k=2 故选:A 5已知 ( ,0) ,且 cos= ,则 sin(+2 )等于( ) A B C D 【考点】同角三角函数基本关系的运用;运用诱导公式化

13、简求值 【分析】由条件利用同角三角函数的基本关系求得 sin 的值,再利用诱导公式、二倍角的 正弦公式,求得 sin(+2)的值 【解答】解:( ,0 ) ,且 cos= ,sin = = , 第 8 页(共 22 页) 则 sin(+2)= sin2=2sincos=2( ) = , 故选:C 6从集合 A=1, ,2中随机选取一个数记为 k,从集合 B= , ,2中随机选取一 个数记为 a,则 ak1 的概率为( ) A B C D 【考点】古典概型及其概率计算公式;几何概型 【分析】利用列举法结婚指数函数的单调性进行求解即可 【解答】解:分别从集合 A, B 各取一个数,共有 33=9

14、组实数对, 若 a= ,则由 ak1 得 k0,此时 k=1,有 1 个, 若 a= ,则由 ak1 得 k0,此时 k= ,2,有 2 个, 若 a=2,则由 ak1 得 k0,此时 k= ,2,有 2 个,共有 5 个, 则对应的概率 P= , 故选:D 7如图是一个程序框图,则输出 s 的值是( ) A5 B7 C9 D11 【考点】程序框图 【分析】根据题意,模拟程序框图的运行过程,即可得出输出的 s 值 【解答】解:模拟程序框图的运行过程,如下; s=38,n=1, s=19+12=18,n=1 +2=3,sn 不成立; s=9+32=10,n=3+2=5 ,sn 不成立; s=5+

15、52=8,n=5+2=7 ,sn 不成立; 第 9 页(共 22 页) s=4+72=9,n=7+2=9 ,sn 成立,退出循环,输出 s 的值为 9 故选:C 8已知 A、B、C 三点在球 O 的球面上,AB=BC=CA=3,且球心 O 到平面 ABC 的距离等 于球半径的 ,则球 O 的表面积为( ) A12 B16 C18 D 【考点】球的体积和表面积 【分析】设出球的半径,小圆半径,通过已知条件求出两个半径,再求球的表面积 【解答】解:设球的半径为 r,O 是ABC 的外心,外接圆半径为 R= , 球心 O 到平面 ABC 的距离等于球半径的 , 得 r2 r2=3,得 r2= 球的表

16、面积 S=4r2=4 = 故选:D 9已知函数 f(x)= x3(1+ )x 2+2bx 在区间(3,1)上是减函数,则实数 b 的取值范 围是( ) A (,3 B ( ,1 C1,2 D3,+) 【考点】利用导数研究函数的单调性;函数单调性的性质 【分析】若函数 f(x)= x3(1+ )x 2+2bx 在区间(3,1)上是减函数,则 f(x) =x2(2 +b)x+2b=(xb) (x 2)0 在区间(3,1)上恒成立,进而得到答案 【解答】解:函数 f(x)= x3(1+ )x 2+2bx 在区间(3,1)上是减函数, f(x)=x 2(2+b)x+2b= ( xb) (x2)0 在区

17、间( 3, 1)上恒成立, 即(3, 1)(b,2) , 解得:b3, 实数 b 的取值范围是(,3, 故选:A 第 10 页(共 22 页) 10已知函数 f(x)=2cos( x+)+1(0,| | ) ,其图象与直线 y=3 相邻两个 交点的距离为 ,若 f(x) 1 对x( , )恒成立,则 的取值范围是( ) A , B , 0C ( , D0, 【考点】余弦函数的图象 【分析】由函数图象和题意可得 =3,进而可得关于 的不等式组,解不等式组结合选项 可得 【解答】解:由题意可得函数 f(x)=2cos(x+)+1 的最大值为 3, f(x)图象与直线 y=3 相邻两个交点的距离为

18、, f(x)的周期 T= , = ,解得 =3, f(x)=2cos(3x+)+1, f(x)1 对x( , )恒成立, 2cos(3x+ )+11 即 cos(3x+)0 对x ( , )恒成立, +2k 且 +2k+ , 解得 2k 且 2k,即 2k 2k,kZ 结合选项可得当 k=0 时, 的取值范围为 ,0, 故选:B 11如图是一个几何体的三视图,则该几何体的体积为( ) A B C23 D24 【考点】由三视图求面积、体积 【分析】根据三视图作出直观图,几何体为三棱锥与四棱锥的组合体 【解答】解:作出几何体的直观图如图所示,则几何体为四棱锥 CABNM 和三棱锥 AACD 组合体

19、 第 11 页(共 22 页) 由三视图可知 BC平面 ABNM,MA平面 ABCD,四边形 ABCD 是边长为 4 的正方形, NB=2,MA=4, 几何体的体积 V= + = 故选 A 12已知函数 f(x)= ,且函数 g(x)=log a( x2+x+2) (a0,且 a1)在 ,1 上的最大值为 2,若对任意 x11,2,存在 x20,3,使得 f(x 1)g(x 2) , 则实数 m 的取值范围是( ) A (, B ( , C ,+) D ,+ 【考点】对数函数的图象与性质 【分析】由已知函数 g(x)=log a(x 2+x+2) (a0,且 a1)在 ,1上的最大值为 2,

20、先求出 a 值,进而求出两个函数在指定区间上的最小值,结合已知,分析两个最小值的关 系,可得答案 【解答】解:函数 f(x)= =31xm, 当 x11,2时,f(x 1) m,9m ; t=x 2+x+2 的图象是开口朝上,且以直线 x= 为对称轴的抛物线, 故 x ,1时,t ,4, 若函数 g(x)=log a(x 2+x+2) (a0,且 a1)在 ,1上的最大值为 2, 则 a=2, 即 g(x)=log 2(x 2+x+2) , 当 x20,3时,g(x 2)1,log 214, 第 12 页(共 22 页) 若对任意 x11,2,存在 x20,3,使得 f(x 1)g (x 2)

21、 , 则 m 1, 解得 m(, , 故选:A 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分. 13在ABC 中,A=60 ,2asinB=3,则 b= 【考点】正弦定理 【分析】由正弦定理可得 b= ,整体代入计算可得 【解答】解:由正弦定理可得 = , b= = = 故答案为: 14已知函数 f(x)=log 3x+x+m 在区间( ,9)上有零点,则实数 m 的取值范围是 11 m 【考点】函数零点的判定定理 【分析】根据零点的性质,f( )f (9)0,即可求出实数 m 的取值范围 【解答】解:y 1=x 单调递增,y 2=log3x 单调递增 f(x)=log 3x+

22、x+m 单调递增 又数 f(x)=log 3x+x+m 在区间( ,9)上有零点, f( )f (9)0, (1+ +m) (2+9+m)0, 11 m 故答案为:11 m 15如果实数 x,y 满足条件 ,则 z= 的最大值为 2 第 13 页(共 22 页) 【考点】简单线性规划 【分析】由约束条件作出可行域,由 z= 的几何意义,即可行域内的动点与坐标原点连线 的斜率的倒数得答案 【解答】解:由约束条件 作出可行域, 联立 ,解得 A( ) , 联立 ,解得 B( ) , , , z= ,2 则 z= 的最大值为 2 故答案为:2 16已知双曲线 C: =1(a0,b0)和圆 O:x 2

23、+y2=b2过双曲线 C 上一点 P 引 圆 O 的两条切线,切点分别为 A,B若PAB 可为正三角形,则双曲线 C 的离心率 e 的 取值范围是 ,+) 【考点】双曲线的简单性质 【分析】由于PAB 可为正三角形,可得OPA=30,OP=2ba,再利用离心率计算公 式即可得出 第 14 页(共 22 页) 【解答】解:PAB 可为正三角形, OPA=30 , OP=2b 则 2ba, , 双曲线 C 的离心率 e 双曲线 C 的离心率的取值范围是 ,+) 故答案为: ,+) 三、解答题:本大题共 5 小题,共 70 分,解答应写出文字说明,证明过程或演算步骤. 17设公比不为 1 等比数列a

24、 n的前 n 项和为 Sn,已知 a3 是 a1 和 a2 的等差中项, S4+a2= (1)求 an; (2)已知等差数列b n的前 n 项和 Tn,b 1=a3,T 7=49,求 + + 【考点】数列的求和;数列递推式 【分析】 (1)设出等比数列的公比,由题意列式求出首项和公比,代入等比数列的通项公 式得答案; (2)由题意求出等差数列的首项和公差,求出通项公式,利用裂项相消法求得 + + 【解答】解:(1)设等比数列a n的公比为 q, 则 ,解得 ; (2)b 1=a3=1, 设等差数列b n的公差为 d, 则 ,解得 d=2 b n=1+2(n 1)=2n1 第 15 页(共 22

25、 页) 则 + + = = (1 + ) = (1 )= 18为了解某班学生喜好体育运动是否与性别有关,对本班 50 人进行了问卷调查得到了如 下的列联表: 已知喜好体育运动与否,采用分层抽样法抽取容量为 10 的样本,则抽到喜好体育运动的人 数为 6 (1)请将上面的列联表补充完整; (2)能否在犯错误的概率不超过 0.005 的前提下认为喜好体育运动与性别有关?说明你的 理由; 喜好体育运动 不喜好体育运动 合计 男生 5 女生 10 合计 50 下面的临界值表供参考: P(k 2k ) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 2.072 2.70

26、6 3.841 5.024 6.635 7.879 10.828 (参考公式:K 2= ,其中 n=a+b+c+d) 【考点】线性回归方程 【分析】 (1)根据分层抽样比计算出全班喜欢体育运动的人数和不喜欢体育运动的人数, (2)根据公式计算 K2,对照临界值表作结论 【解答】解:(1)全班喜欢体育运动的人数为 50 =30,故不喜欢体育运动的人数为 20,列联表如下: 喜好体育运动 不喜好体育运动 合计 男生 20 5 25 女生 10 15 25 合计 30 20 50 (2)K 2= =8.3337.879 在犯错误的概率不超过 0.005 的前提下认为喜好体育运动与性别有关 第 16

27、页(共 22 页) 19如图,直三棱柱 ABCA1B1C1 中,D 、E 分别是棱 BC、AB 的中点,点 F 在棱 CC1 上, 已知 AB=AC,AA 1=3,BC=CF=2 (1)求证:C 1E平面 ADF; (2)若点 M 在棱 BB1 上,当 BM 为何值时,平面 CAM平面 ADF? 【考点】直线与平面平行的判定;平面与平面垂直的判定 【分析】 (1)连接 CE 交 AD 于 O,连接 OF因为 CE,AD 为ABC 中线,所以 O 为 ABC 的重心, 由此能够证明 C1E平面 ADF (2)当 BM=1 时,平面 CAM平面 ADF在直三棱柱 ABCA1B1C1 中,先证出 A

28、D平 面 B1BCC1再证明当 BM=1 时,平面 CAM平面 ADF 【解答】解:(1)连接 CE 交 AD 于 O,连接 OF 因为 CE,AD 为ABC 中线, 所以 O 为ABC 的重心, 从而 OFC 1E OF面 ADF, C1E平面 ADF, 所以 C1E平面 ADF (2)当 BM=1 时,平面 CAM平面 ADF 在直三棱柱 ABCA1B1C1 中, 由于 B1B平面 ABC,BB 1平面 B1BCC1, 所以平面 B1BCC1平面 ABC 由于 AB=AC,D 是 BC 中点,所以 ADBC 又平面 B1BCC1平面 ABC=BC, 所以 AD平面 B1BCC1 而 CM平

29、面 B1BCC1,于是 ADCM 因为 BM=CD=1,BC=CF=2,所以 RtCBMRtFCD, 所以 CMDF DF 与 AD 相交,所以 CM 平面 ADF CM平面 CAM,所以平面 CAM平面 ADF 当 BM=1 时,平面 CAM平面 ADF 20平面直角坐标系 xoy 中,直线 xy+1=0 截以原点 O 为圆心的圆所得的弦长为 第 17 页(共 22 页) (1)求圆 O 的方程; (2)若直线 l 与圆 O 切于第一象限,且与坐标轴交于 D,E,当 DE 长最小时,求直线 l 的方程; (3)设 M,P 是圆 O 上任意两点,点 M 关于 x 轴的对称点为 N,若直线 MP

30、、NP 分别交 于 x 轴于点(m,0)和(n, 0) ,问 mn 是否为定值?若是,请求出该定值;若不是,请 说明理由 【考点】直线和圆的方程的应用;直线与圆相交的性质 【分析】 (1)求出 O 点到直线 xy+1=0 的距离,进而可求圆 O 的半径,即可得到圆 O 的方 程; (2)设直线 l 的方程,利用直线 l 与圆 O 相切,及基本不等式,可求 DE 长最小时,直线 l 的方程; (3)设 M(x 1,y 1) ,P (x 2,y 2) ,则 N(x 1, y1) , , ,求出 直线 MP、NP 分别与 x 轴的交点,进而可求 mn 的值 【解答】解:(1)因为 O 点到直线 xy

31、+1=0 的距离为 , 所以圆 O 的半径为 , 故圆 O 的方程为 x2+y2=2 (2)设直线 l 的方程为 ,即 bx+ayab=0, 由直线 l 与圆 O 相切,得 ,即 , , 当且仅当 a=b=2 时取等号,此时直线 l 的方程为 x+y2=0 (3)设 M(x 1,y 1) ,P (x 2,y 2) ,则 N(x 1, y1) , , , 直线 MP 与 x 轴交点 , , 直线 NP 与 x 轴交点 , , 第 18 页(共 22 页) = = =2, 故 mn 为定值 2 21已知函数 f(x)= x2(2a+2)x+(2a+1)lnx (1)若曲线 y=f(x)在点(2,f

32、(2) )处的切线的斜率小于 0,求 f(x)的单调区间; (2)对任意的 a , ,函数 g(x)=f(x) 在区间1,2上为增函数,求 的取 值范围 【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程 【分析】 (1)求出函数的导数,并分解因式,由题意可得 f(2)0,再由导数大于 0, 可得增区间,导数小于 0,可得减区间,注意定义域; (2)求出 g(x)的导数,问题转化为 x37x2+6x+0 对 x1,2恒成立,令 h(x) =x37x2+6x+,求出导数,求得单调区间和最小值,解不等式即可得到所求范围 【解答】解:(1)函数 f(x )= x2(2a+2)x+(2a

33、+1)lnx, (x0) , f(x)=x(2a+2)+ = ,x0 , 由题意可得 f( 2)= 0,可得 a ,2a+121, 由 f(x)0,可得 x2a+1 或 0x1;f(x)0,可得 1x2a+1 即有 f(x)的增区间为(0, 1) , (2a+1,+) ;减区间为(1,2a +1) ; (2)函数 g(x)=f(x) 在区间1,2上为增函数, g(x)0 对任意的 a , ,x1,2恒成立, 即 x(2a+2)+ + 0,即为 x3(2a+2)x 2+(2a+ 1)x+ 0, 则(2x2x 2)a+x 32x2+x+0,a , , 由 x1,2,可得 2x2x20,只需 (2x

34、2x 2)+x 32x2+x+0 即 x37x2+6x+0 对 x1,2恒成立, 第 19 页(共 22 页) 令 h(x)=x 37x2+6x+,h ( x)=3x 214x+60 在 1x2 恒成立, 则有 h(x)在1,2递减,可得 h(2)取得最小值,且为8+ 0, 解得 8, 的取值范围是8,+) 选考题(请考生从 22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分)选 修 4-1:几何证明选讲 22如图,AB 是圆 O 的直径,C 为圆周上一点,过 C 作圆 O 的切线 l,过 A 作直线 l 的 垂线 AD,D 为垂足,AD 与圆 O 交于点 E (1)求证:AB

35、DE=BC CE; (2)若 AB=8,BC=4 ,求线段 AE 的长 【考点】与圆有关的比例线段 【分析】 (1)连接 BE,OC, OCBE=F,证明EDCBCA,即可证明 ABDE=BCCE; (2)证明四边形 EFCD 是矩形,OBC 是等边三角形,即可得出结论 【解答】 (1)证明:连接 BE,OC,AC,OCBE=F,则 CD 是圆 O 的切线, OCl, ADl,ADOC, AB 是圆 O 的直径,AD BE , ADl,lBE, DCE=CBE=CAB , EDC=BCA=90, EDCBCA, = , ABDE=BC CE; (2)解:由(1)可知四边形 EFCD 是矩形,

36、DE=CF, 圆 O 的直径 AB=8,BC=4, ABC=60 OBC 是等边三角形, EBA=30, AE=4 第 20 页(共 22 页) 选修 4-4:坐标系与参数方程 23已知极点与直角坐标系的原点重合,极轴与 x 轴的正半轴重合,圆 C 的极坐标方程是 =asin,直线 l 的参数方程是 (t 为参数) (1)若 a=2,直线 l 与 x 轴的交点是 M,N 是圆 C 上一动点,求 |MN|的最大值; (2)直线 l 被圆 C 截得的弦长等于圆 C 的半径的 倍,求 a 的值 【考点】参数方程化成普通方程;简单曲线的极坐标方程 【分析】 (1)求出圆 C 的圆心和半径, M 点坐标

37、,则|MN|的最大值为|MC|+r; (2)由垂径定理可知圆心到直线 l 的距离为半径的 ,列出方程解出 【解答】解:(1)当 a=2 时,圆 C 的直角坐标方程为 x2+y2=2y,即 x2+(y 1) 2=1圆 C 的圆心坐标为 C(0,1) ,半径 r=1 令 y= =0 得 t=0,把 t=0 代入 x= 得 x=2M( 2,0) |MC|= = | MN|的最大值为|MC|+r= (2)由 =asin 得 2=asin,圆 C 的直角坐标方程是 x2+y2=ay,即 x2+(y ) 2= 圆 C 的圆心为 C(0, ) ,半径为| |, 直线 l 的普通方程为 4x+3y8=0 直线

38、 l 被圆 C 截得的弦长等于圆 C 的半径的 倍, 圆心 C 到直线 l 的距离为圆 C 半径的一半 =| |,解得 a=32 或 a= 选修 4-5:不等式选讲 24已知实数 a、b 满足:a 0,b0 (1)若 xR,求证:|x+a|+|xb|2 第 21 页(共 22 页) (2)若 a+b=1,求证: + + 12 【考点】不等式的证明;绝对值三角不等式 【分析】 (1)运用绝对值不等式的性质和均值不等式,即可得证; (2)由均值不等式可得 ab ,即 4,原不等式左边化简即为 ,即可得证 【解答】证明:(1)由 a0,b0,可得 |x+a|+|xb|(x+a) (xb)|=a +b2 , 当且仅当 a=b 取得等号; (2)由 a,b0,1=a +b2 , 可得 ab ,即 4, 则 + + = + = 12, 当且仅当 a=b= ,取得等号 第 22 页(共 22 页) 2016 年 8 月 3 日

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 试题真题

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。