精选优质文档-倾情为你奉上数学例谈巧用圆锥曲线定义求最值问题在求解有关圆锥曲线的最值问题时, 通常是利用函数的观点, 建立函数表达式进行求解。但是, 一味的强调函数观点, 有时会使思维陷入僵局。这时, 若能考虑用圆锥曲线的定义来求解, 问题就显得特别的简单。下面就列举一些例子加以说明。例1、2008年福州市数学质检文科、理科的选择题第12题:如图,M是以A、B为焦点的双曲线右支上任一点,若点M到点C(3,1)与点B的距离之和为S,则S的取值范围是( )A、 B、C、 D、分析:此题的得分率很低,用函数观点求解困难重重。若能利用双曲线的第一定义,则势如破竹。解法如下:连结MA,由双曲线的第一定义可得: 当且仅当A、M、C三点共线时取得最小值。如果此题就到此为止,未免太可惜了!于是笔者进一步引导学生作如下的探究:(1)如果M点在左支上,则点M到点C(3,1)与点B的距离之和为S,则S的取值范围是多少?(2)如果M是以A、B为焦点的椭圆上任一点,若点M到点与点B的距离之差为S,