1、2013考研数学一大纲变化对比表高等数学部分章节2012大纲 2013大纲 变化情况及复习策略一、 函数、极限、连续考试内容函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:,函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。考试要求1 理解函数的概念,掌握函数的表示法,会建立应用
2、问题的函数关系。2 了解函数的有界性、单调性、周期性和奇偶性。3 理解复合函数及分段函数的概念,了解反函数及隐函数的概念。4 掌握基本初等函数的性质及其图形,了解初等函数的概念。5 理解极限的概念,理解函考试内容函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:,函数连续的概念,函数间断点的类型,初等函数的
3、连续性,闭区间上连续函数的性质。考试要求10理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。11了解函数的有界性、单调性、周期性和奇偶性。12理解复合函数及分段函数的概念,了解反函数及隐函数的概念。13掌握基本初等函数的性质及其图形,了解初等函数的概念。14理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限的关系。15掌握极限的性质及四则运算法则。16掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。17理解无穷小量、无穷大量的概念,掌握无变化,照常复习,注意连续性在求极限中的应用,闭区间上连续函数性质的应用。数左极限与右极限的
4、概念以及函数极限存在与左极限、右极限的关系。6 掌握极限的性质及四则运算法则。7 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。8 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。9 理解函数连续性的概念(含左连续和右连续) ,会判别函数间断点的类型。10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理) ,并会应用这些性质。无穷小量的比较方法,会用等价无穷小量求极限。18理解函数连续性的概念(含左连续和右连续) ,会判别函数间断点的类型。10. 了解连续函数的性质和初等函数
5、的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理) ,并会应用这些性质。二、一元函数微分学考试内容导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线与法线,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数和隐函数以及参数方程所确定的函数的微分法,高阶导数,一阶微分形式的不变性,微分中值定理,洛必达(L Hospital)法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函考试内容导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线与法线,导数和微分
6、的四则运算,基本初等函数的导数,复合函数、反函数和隐函数以及参数方程所确定的函数的微分法,高阶导数,一阶微分形式的不变性,微分中值定理,洛必达(LHospital)法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数的最大值与最小值,弧微分,曲率的概念,曲率圆与曲率半径考试要求1 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。2 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数等函数的导数公式。了解微分的四则运算法则
7、和一阶微分形式的不变性,会求函数的无变化,照常复习,注意导数的基本概念及微分中值定理。数的最大值与最小值,弧微分,曲率的概念,曲率圆与曲率半径考试要求1 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。2 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。3 了解高阶导数的概念,会求简单函数的高阶导数。4 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。
8、5 理解并会用微分。3 了解高阶导数的概念,会求简单函数的高阶导数。4 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。5 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理。6 掌握用洛必达法则求未定式极限的方法。7 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。8 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数 f(x)具有二阶导数,当 时,f(x)的图形是凹的;当 时,f(x)的图形是凸的) ,会求函数图形的
9、拐点以及水平、铅直和斜渐近线,会描绘函数的图形。9. 了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理。6 掌握用洛必达法则求未定式极限的方法。7 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。8 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数,当 时,f(x)的图形是凹的;当 时,f(x)的图形是凸的) ,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。9
10、 了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。三、一元函数积分学考试内容原函数和不定积分的概念,不定积分的基本性质,基本积分公式,定积分的概念和基本性质,定积分中值定理,积分上限的函数及其导数,牛顿莱布尼茨(Newton-Leibniz)公式,不定积分和定积分的换元积分法与分部积分法,有理函数、三角函数的有理式和简单无理函数的积分,反常(广义)积分,定积分的应用考试要求1 理解原函数的概念,理解不定积分与定积分的概念。2 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。3 会求有理函数、三角函数有理式和简单无理函数的积分。4 理解积分
11、上限的函数,会求它的导数,掌握牛顿莱布尼茨公式。考试内容原函数和不定积分的概念,不定积分的基本性质,基本积分公式,定积分的概念和基本性质,定积分中值定理,积分上限的函数及其导数,牛顿莱布尼茨(Newton-Leibniz)公式,不定积分和定积分的换元积分法与分部积分法,有理函数、三角函数的有理式和简单无理函数的积分,反常(广义)积分,定积分的应用考试要求1 理解原函数的概念,理解不定积分与定积分的概念。2 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。3 会求有理函数、三角函数有理式和简单无理函数的积分。4 理解积分上限的函数,会求它的导数,掌
12、握牛顿莱布尼茨公式。5 了解反常积分的概念,会计算反常积分。6. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平等截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。无变化,照常复习,注意变限积分在求极限中的应用。5 了解反常积分的概念,会计算反常积分。6 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平等截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。四、向量代数和空间解析几何考试内容向 量的概念,向量的线性运算,向量的数量积和向量积,向量的混合积
13、,两向量垂直、平行的条件,两向量的夹角,向量的坐标表达式及其运算,单位向量,方向数与 方向余弦,曲面方程和空间曲线方程的概念,平面方程、直线方程,平面与平面、平面与直线、直线与直线考试内容向 量的概念,向量的线性运算,向量的数量积和向量积,向量的混合积,两向量垂直、平行的条件,两向量的夹角,向量的坐标表达式及其运算,单位向量,方向数与 方向余弦,曲面方程和空间曲线方程的概念,平面方程、直线方程,平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件,点到平面和点到直线的距 离,球面方程和一般方程,空间曲线在坐标面上的投影曲线方程考试要求1 理解空间直角坐标系,理解向量的概念及其表示。2
14、掌握向量的运算(线性运算、数量积、向量积、混合积) ,了解两个向量垂直、平行的条件。3 理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法。4 掌握平面方程和直线方程及其求法。无变化,照常复习,这部分独立考查的概率较小。的夹角以及平行、垂直的条件,点到平面和点到直线的距 离,球面方程和一般方程,空间曲线在坐标面上的投影曲线方程考试要求1 理解空间直角坐标系,理解向量的概念及其表示。2 掌握向量的运算(线性运算、数量积、向量积、混合积) ,了解两个向量垂直、平行的条件。3 理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的5 会求平
15、面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。6 会求点到直线以及点到平面的距离。7 了解曲面方程和空间曲线方程的概念。8 了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程。9. 了解空间曲线的参数方程和一般方程。了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程。方法。4 掌握平面方程和直线方程及其求法。5 会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。6 会求点到直线以及点到平面的距离。7 了解曲面方程和空间曲线方程的概念。8 了解常用二次曲面
16、的方程及其图形,会求简单的柱面和旋转曲面的方程。9 了解空间曲线的参数方程和一般方程。了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程。五、多元函数微分学考试内容多 元函数的概念,二元函数的几何意义,二元函数的极限与连续的概念,有界闭区域上多元连续函数的性质,多元函数的偏导数和全微分,全微分存在的必要条件和充 分条件,多元复合函数、隐函数的求导法,二阶偏导数,方向导数和梯度,空间曲线的切线和法平面,曲面的切平面和法线,二元函数的二阶泰勒公式,多元函数的 极值和条件极值,多元函数的最大值、最小值及其简单应用。考试内容多 元函数的概念,二元函数的几何意义,二元函数的极限与连续的概念,有界闭区
17、域上多元连续函数的性质,多元函数的偏导数和全微分,全微分存在的必要条件和充 分条件,多元复合函数、隐函数的求导法,二阶偏导数,方向导数和梯度,空间曲线的切线和法平面,曲面的切平面和法线,二元函数的二阶泰勒公式,多元函数的 极值和条件极值,多元函数的最大值、最小值及其简单应用。考试要求1 理解多元函数的概念,理解二元函数的几何意义。2 了解二元函数的极限与连续的概念以及有界闭区域上二元连续函数的性质。3 理解多元函数偏导数与全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。4 理解方向导数与梯度的概念,并掌握其计算方法。5 掌握多元复合函数一阶、二阶偏导数无变
18、化,照常复习,注意偏导数与极值的计算。考试要求1 理解多元函数的概念,理解二元函数的几何意义。2 了解二元函数的极限与连续的概念以及有界闭区域上二元连续函数的性质。3 理解多元函数偏导数与全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。4 理解方向导数与梯度的概念,并掌握其计算方法。5 掌握多元复合函数一阶、二阶偏导数的求法。6 了解隐函数存在定理,会求多元隐函数的偏导数。7 了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。8 了解二元函数的二阶泰勒公式。9 理解多元函数极值和条件极值的概念,的求法。6 了解隐函数存在定理,会求多元隐函数的偏导数。7 了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。8 了解二元函数的二阶泰勒公式。9. 理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题。