放射治疗物理学基础.doc

上传人:龙*** 文档编号:1220240 上传时间:2018-12-26 格式:DOC 页数:50 大小:12.49MB
下载 相关 举报
放射治疗物理学基础.doc_第1页
第1页 / 共50页
放射治疗物理学基础.doc_第2页
第2页 / 共50页
放射治疗物理学基础.doc_第3页
第3页 / 共50页
放射治疗物理学基础.doc_第4页
第4页 / 共50页
放射治疗物理学基础.doc_第5页
第5页 / 共50页
点击查看更多>>
资源描述

1、第三章 放射治疗物理学基础放射治疗物理是研究放射治疗设备、技术、剂量测量及剂量学、治疗计划设计、质量保证和质量控制、模室技术、特殊放射治疗方法学及学科前沿的新技术、新业务的分支学科,它必须直接为放射治疗临床服务。放射物理学对推动放疗专业的发展都起着举足轻重的作用,一个医院的放疗科,如果没有一个强有力的放射物理人才和设备技术的合理配置,要走在本专业学科发展的前沿是不可能的。放射治疗设备、质量保证和质量控制、模室技术等内容将有专门的章节进行介绍,本章就核物理基础知识、放射治疗剂量学和剂量测量等作一介绍。第一节 原子结构和核衰变自然界中的所有物质都由分子和原子构成。分子保持着物质的基本属性和化学性质

2、,分子由原子组成,目前己知的原子(也称元素)有 109 种,原子又有着它自己的结构。了解原子的结构对于我们认识放射线的产生及其与物质的相互作用是十分必要的因为这些过程都发生在原子的范围内。一、原子结构原子由原子核和核外电子组成。原子的中心是带正电荷的原子核,核外是带有等量负电荷的电子,这些电子沿着一定的轨道绕着原子核高速旋转。早在 1913 年英国物理学家卢瑟福用散射实验证实原子的结构类似太阳系。带负电的电子围绕带正电的原子核转动,正像行星绕着太阳旋转一样(图 3-11) 。原子是很小的结构,其直径约为 108 cm。图 3-11 原子模型原子核由质子和中子组成,都是基本粒子,统称核子。它们数

3、目的总和就是原子量。原子核小而紧密,其直径约为 1014cm,但集中了几乎整个原子的质量。1961 年后,国际上统一用 12C 原子量的 1/12 作为原子质量单位,其符号为 amu。原子质量和原子质量数是不同的概念,前者是指原子的实际质量,后者则是指原子核中核子的总数。原子核内的电荷与周围电子的总电荷相等(核内质子数等于核外的电子数) ,故整个原子显中性。电子或质子的数目,即门捷列夫元素周期表中所列的顺序数,称为原子序数。标记方法:AZX,X 代表元素符号;A 为原子的质量数,即核内质子和中子总数;Z 为原子序数,即核内质子数,显然,核内中子数应等于 AZ。通常书写时 Z 可省略。例如: 6

4、027Co,说明60Co 有 27 个质子,27 个电子, (602733)33 个中子,它的原子量是 60。核外电子受库伦力的作用沿着一定的轨道围绕着原子核旋转,这些电子分布在不同壳层上,若干轨道组成一个壳层,距核最近的是 K 层,从内向外依次为L、M、N、O、P、Q层。核外壳层所能容纳的电子数有一定的限度,每层电子数按 2n2规律排列(n 代表层数) ,这样 K、L、M、N、各层所包含的电子数分别为2,8,18,32。二、原子、原子核能级电子填充壳层时按照从低能级到高能级的顺序,保证原子处于最低能量状态,这种状态称为基态。当一个自由电子填充壳层时,会以发射一个光子的形式释放能量,能量值的大

5、小等于壳层能级能量的绝对值,这些能量称为相应壳层的结合能。由于高原子序数的能级能量更低,并且是负值,因而对于同一个能级,结合能将随原子序数增大而增加。当电子获得能量,从低能级跃迁到高能级而使低能级出现空位时,称原子处于激发态。处于激发态的原子很不稳定,高能级电子会自发跃迁到低能级空位上而使原子回到基态。两能级能量的差值一种可能是以电磁辐射的形式发出,这种电磁辐射称为特征辐射,当特征辐射的能量足够高,进人X射线能量范围时,又称为特征X射线;另一种可能是传递给外层电子,获得能量的外层电子脱离原子束缚而成为自由电子,这种电子称为俄歇电子,它的能量等于相应跃迁的X射线的能量减去该电子的结合能。不同元素

6、的原子,其轨道电子的能级不同,因而它们都有自己的特征辐射。通过探测物质所发射的特征辐射,可以确定物质的成分及各成分的含量。原子核内部也存在类似原子的壳层结构和能级。每个壳层只能容纳一定数量的质子和中子。核子填充壳层的顺序也遵循从低能级到高能级的顺序。当核子获得能量,可以从基态跃迁到某个激发态。当它再跃迁回基态时,以射线形式辐射能量,能量值等于跃迁能级值之差。跃迁回基态的过程可以一步完成,也可首先跃迁到其他较低的能级,再经数步回到基态。一个微观粒子的能量很小,通常采用电子伏(eV)或千电子伏(keV)或兆电子伏(MeV)作单位。leV是一个电子在真空中通过lV电位差所获得的动能,它与其他三个单位

7、的转换关系是leV=l.Ol0-3keV=l0-6MeV=l.602192lO-l9J三、核素、元素、同位素和同质异能素核素和元素是不同的概念。凡质子数相同的原子称为一种元素,它们的原子序数相同,具有相同的化学特性,但原子核中的中子数可以不同,因而物理特性可以有某些差异。换言之,即每种元素可以包括若干中核素。核素和同位素也是不同的概念。凡属于同一种元素的核素,在元素周期表中处于相同的位置,称为该元素的同位素,或彼此是同位素。所以核素是表示某种原子具有一定特征的名称,同位素是表示核素之间相互关系的名称。例如 1H、2H、12C、14C 是四种不同的核素,1H 和 2H 相互间是同位素,12C 和

8、 14C 相互间是同位素,1H 和 12C 则不是同位素。1核素:凡核内质子数、中子数和能量状态完全相同的原子的集合都称为核素。核素分为放射性核素和稳定核素。放射性核素是指原子会自发地发生核变化而转变成另一种原子;稳定核素则是不会自发地发生核变化的原子。2同位素:是指核内质子数相同而中子数不同的核素,彼此称为同位素。以氢为例,在元素周期表中占同一位置的氢,有三种质量不同的原子。它们的质子数相同,但中子数不同,所以氘、氚是氢的同位素。同位素可为两大类:稳定同位素,这类同位素原子核不会自发衰变,能够稳定地存在;放射性同位素,这类同位素的原子核自发地衰变而转变为另一种元素的原子核,同时放出射线。3同

9、质异能素:凡核内质子数和中子数都相同而原子核处于不同能量的核素,彼此称为同质异能素。例如 99m43TC 和 9943TC 的质子和中子数均相同,但 99mTC 处于亚稳态,m 代表它处于较高的能量状态。四、核衰变类型不稳定核素自发地放出射线,转变为另一种核素,这种现象称为放射性,这个过程称为放射性衰变,这种核素称为放射性核素。发出的射线种类可能有 射线、 射线、射线,还可能有正电子、质子、中子等其他粒子。发生衰变前的核称为母核,发生衰变后的核称为子核,衰变过程中释放的能量称为衰变能。放射性核素转变为稳定核素时往往需要多次衰变才能完成,这种衰变称递次衰变,衰变过程中形成的核素系列称衰变系列。核

10、衰变不依外界条件变化而改变。在整个衰变过程中,完全遵守电荷守恒、质量守恒、能量守恒定律。不同类型放射性核素的衰变方式不尽相同。(一) 衰变不稳定的原子核自发地从核内放射出 粒子即氦原子核(4He)而变成另一个核的过程称为 衰变,衰变后的质量数减少 4,电荷数减少 2。其反应式可表示为AZX A4Z2YQ如 23892U 23490Th+42He+4.897MeV.式中 X 是母核,Y 是子核, 是 粒子,Q 是衰变过程中放出的能量,大部分成为 粒子的能量。重核易发生 衰变,发生衰变后原子核的质子数和中子数都将减少 2。镭(22688Ra)是典型的 衰变核素。(二) 衰变放射性核素的原子核释放

11、粒子转变为原子序数增加 1,但质量数不变的子体核素过程称为 衰变。 衰变包括三种类型:衰变、衰变、电子俘获。衰变:由母核中放出负电子 e1 的衰变过程即 衰变。其反应式如下:AZX AZ1YQ,如 3215P 3216S +VQ式中 V 是一种质量 V1 的中微子,其质量至今尚未测出,粒子即为电子。衰变:由母核中放出正电子 e的衰变过程即 衰变。其反应式如下:AZX AZ1YQ,如 189 F 188O+VQ是正电子,质量和电子相同,带一个单位的正电荷。3 、电子俘获:母核俘获了核外的一个电子的过程即电子俘获。其反应式如下:AZXe AZ-1YVQ,如 12553I 12553TeVQ(三)

12、衰变和内转换 和 衰变后的和很可能处于激发态(原子核处在能量较高的状态称为激发态) ,这种状态往往是不稳定的,它通过放出 光子从激发态回到较低的能态或基态,这种变化过程称为 衰变或 跃迁。在 衰变过程中,原子的质量和原子序数均没有发生改变,而只是原子核的能量状态发生了改变,故又称之为同质异能跃迁。其反应式如下:AmZX A1Z1XQ放疗中常用的钴60 源、铯137 源和铱192 源均既具有 放射性,同时也具有 放射性。原子核能级的间隔一般在 103MeV 以上,故 射线能量低限是 103MeV,高端可达到 MeV 能量级。处于激发态的原子核还有另外一种释放能量的方式,即将跃迁的能量直接转移给一

13、个轨道电子而将后者发射出原子,这种现象称为内转换,发射出的电子称为内转换电子。根据能量守恒定律,内转换电子的动能等于跃迁的能量减去轨道电子的结合能。由于 K 层电子最靠近原子核,因此只要能量足够,K 层内转换的概率最大。无论是电子俘获过程还是内转换过程,由于原子的内壳层缺少了电子而出现空位,外层电子将会来填充这个空位,因此两个过程都会伴随着特征 X 射线和俄歇电子的发射。(四)裂变由一个重核分裂成二个轻核而改变原子核不稳定状态的过程即裂变。其反应式为:AZX A1Z1Y1+A2Z2Y2NQ.五、核衰变规律所有放射性核素的核衰变方式和速度虽然各不相同,但通过实验证实,核衰变的发生却完全遵循自身的

14、规律进行,物理学上称之为核衰变规律。放射性物质会自发衰变,度量这种衰变快慢的量即衰变率,表示放射性强度(活度) ,单位是贝可(Bq) ,1Bq=1 次核衰变/秒。另一个单位是居里(Ci) ,1Ci3.710 10 Bq。放射性物质的放射性强度随时间的延长而逐渐减小,呈指数规律,表达式为:NN 0e-t式中 N0:衰变前的原子数;N:衰变到 t 时刻的原子数:t:由 N0到 N 的时间;:衰变常数,与元素放射性有关;e:自然对数的底,其值为 2.718。元素衰变到一半的时间称为半衰期,用 Th 表示。半衰期 Th 与衰变常数有下列关系:Th0.693在实际应用中常用 Th 来表示各种核素强度较小

15、的快慢。半衰期是表示放射性特征的一个重要物理参数。放射性核素进入生物体内,由于生物代谢过程从体内排出,当排出至原来的一半所需要的时间,称之为生物半衰期(Tb) 。如果将原子数 N0及 N 换成放射性强度 I0及 I,上式仍然成立:II 0e-t再引入平均寿命 Ta 概念:以开始衰变时的速率衰变下去,至全部都衰变完所需的时间,可算得:Ta1.44Th上述公式对我们计算同位素的蜕变是很有用的。例如有一台钴60 治疗机,刚到时源强 5000 居里,Th 为 5.3 年,三年后还有多少居里?平均寿命是多少?解:I 05000 居里,Th5.3 年,t3 年,代入上述公式得:I5000ee 30.693

16、/5.3 50000.6754=3377 居里三年后还剩 3377 居里平均寿命为:Ta1.44Th1.445.37.6 年六、人工放射性核素人工放射性核素在医学中有着广泛的应用,如 125I、 60Co、 127Cs 等。利用核反应堆生产是人工放射性核素的主要来源,制备途径有两种:利用反应堆中强中子束照射靶核,靶核俘获中子而生成放射性核;利用中子引起重核裂变,从裂变碎片中提取放射性核素。这样制备出来的核素是丰中子核素,通常具有 衰变。高能加速器也能用来生产放射性核素,这样制备出来的核素是缺中子核素,通常具有 衰变,但多数是短寿命的。在制备放射性核素时,如果中子束的注量率保持不变,那么人工放射

17、性核素的数目一方面以固定的产生率增加,另一方面生成的放射性核素也在衰变。当靶核照射时间延长,放射性活度的增长不是线性的,而是趋向饱和值,因此无限地延长靶核照射时间不能提高放射性活度,一般应选择照射时间小于 5 个半衰期。第二节 电离辐射与物质的相互作用及其与放射治疗的关系电离辐射与物质的相互作用,是研究辐射效应和进行剂量测量的物理基础。在与物质的相互作用中,带电粒子与不带电粒子有着显著的差别。一、带电粒子与物质的相互作用一般情况下,带电粒子与原子核和核外电子发生电磁作用,主要引起电离或激发、散射和各种形式的辐射损失,结果使入射带电粒子损失动能和改变运动方向。带电粒子穿过物质时,几乎与相遇的每个

18、原子发生作用,作用次数十分频繁,但每次作用损失能量不多。所以从宏观上看带电粒子似乎是连续损失能量。带电粒子与靶物质申的原子相互作用主要有四种:与核外电子发生非弹性碰撞、与原子核发生非弹性碰撞、与原子核发生弹性碰撞、与核外电子发生弹性碰撞。(一)带电粒子与核外电子发生非弹性碰撞当带有正电荷或负电荷的粒子从靶物质原子近旁掠过时,入射粒子与核外电子之间的库仑作用,使电子受到吸引或排斥,从而使电子获得一部分能量。若获得的能量足够大,使电子可以摆脱原子核的束缚而脱离原子,成为自由电子,原子变成一个失去一个电子的原子- 正离子,这个过程称为电离。这个自由电子称为次级电子或电子。若次级电子有足够的动能,可继

19、续与其他原子发生作用。若该自由电子来自于内壳层,其逃逸后留下空穴,外层电子就要来填补 (跃迁),从而产生特征射X线或俄歇电子。带电粒子与核外电子发生非弹性碰撞,导致原子的电离或激发,是带电粒子穿过物质时损失动能的主要方式。我们把这种方式引起的能量损失称为电离损失。(二)带电粒子与原子核发生非弹性碰撞带电粒子靠近原子核时,它与原子核之间的库仑作用,引起非弹性碰撞,使入射粒子的速度和方向发生改变。此时带电粒子的一部分动能就变成具有连续能量的X射线辐射出来,这种辐射称为韧致辐射 (连续 X射线),这种方式引起的入射带电粒子的能量损失称为辐射损失。电子质量较小,与原子核发生非弹性碰撞后运动状态改变明显

20、。因此,粒子与物质发生相互作用时,辐射损失是其重要的一种方式。(三)带电粒子与原子核发生弹性碰撞当带电粒子与靶物质原子核库仑场发生相互作用时,尽管带电粒子的运动方向与运动速度发生了变化,但不辐射光子,也不激发原子核,满足动能和动量守恒定律,属于弹性碰撞,入射粒子产生弹性散射。对质量较小的入射粒子,碰撞后,绝大部分动能仍由被散射的入射粒子 (也即散射粒子 )带走,并可进行多次弹性碰撞。多次散射后,质量较小的入射粒子运动方向改变很大,故在物质中的运动径迹十分曲折。(四)带电粒子与核外电子发生弹性碰撞同样,入射的带电粒子也会与核外电子发生弹性碰撞。但这种相互作用只在极低能量 (1OOeV)的粒子入射

21、时才会考虑。事实上,带电粒子进入靶物质后,要与许多原子发生许多次碰撞。例如1MeV的带电粒子进入靶物质后,要发生10 4数量级的碰撞次数,带电粒子逐步慢化。如靶物质足够厚,带电粒子动能耗尽后就停留在物质中,即入射带电粒子被物质吸收了。粒子从入射位置至完全停止位置沿运动轨迹所经过的距离称为路径长度;沿人射方向从人射位置至完全停止位置所经过的距离称为射程。路径长度测量十分困难,而射程可用实验来测量。发生各种碰撞类型的几率 (可能性),对不同种类的带电粒子和入射粒子的不同能量区域,情况是十分不同的。带电粒子穿过靶物质时使物质原子电离产生原子-离子对。单位路程上产生电子-离子对数目称为比电离。比电离与

22、带电粒子在靶物质中的碰撞阻止本领成正比。 “传能线密度”最早是表示带电粒子穿过物质时每单位距离内所损耗的能量。ICRU(1962)又特别限定穿过物质时每单位距离内给定能量的带电粒子定域地给予介质的平均能量,重点是强调在介质中沉积的能量,而不是带电粒子损耗的能量,因为生物效应依赖于电离辐射微观体积内局部授予的能量。二、电子与物质的相互作用电子 (包括负电子和正电子),是轻带电粒子,质量小,较其他重带电粒子而言需注意其特点。电子在与靶原子作用时主要引起电离能量损失、辐射能量损失和多次散射。电子在物质中的运动径迹十分曲折。电子与靶物质原子的核外电子发生非弹性碰撞,导致原子的电离或激发而引起的电离损失

23、是电子在物质中损失能量的重要方式。电子穿透物质的本领比粒子大得多。电子与物质原子的原子核发生非弹性碰撞,产生具有连续射线能量的轫致辐射(X射线),引起辐射损失,也是一种重要的方式。图3-21示意了电子非弹性散射。图 3-21 电子非弹性散射示意图电子的轫致辐射强度比粒子、质子要大得多。电子打到重元素上,更容易发生轫致辐射。例如在X光管和加速器中,电子束打到钨靶上就可产生诊断或治疗用的X射线; 电子线防护中往往采用低原子序数的物质而不采用高原子序数的物质,否则会产生很强的轫致辐射而达不到防护效果。电子能量低时,电离损失占优势;电子能量高时,辐射损失变得更重要。常用的放射源, 电子能量低于几个Me

24、V ,主要是电离损失。加速器产生的电子束,能量较高,束流强度较大,轫致辐射强度很高,使用中应考虑电子束的伴随X射线对临床的影响。电子与物质原子的原子核发生的弹性碰撞,由于电子质量很小,因而散射角度可以很大,而且会发生多次散射,最后偏离原来的运动方向。靶物质的原子序数越大,散射越厉害。利用此特性,加速器采用散射箔以将电子束展宽到临床所需的最大射野范围,再借助电子限光筒的筒壁增加电子束射野中的散射电子,以弥补电子束射野边缘剂量的不足。目前的加速器多采用双层散射箔,第一层箔用于扩束,第二层箔用于均整,因而减少了对限光筒形状的依赖性。电子经过多次散射,最后的散射角可以大于90。 ,这种散射称为反散射。

25、因此,剂量测量中应选用低Z物质做源的托架,以减少反散射对测量结果的影响。电子线比粒子射程大。电子穿过物质时所走的路径十分曲折,因而路径长度大大超过射程。对于加速器产生的单能电子,由于统计涨落引起的歧离现象严重,射程难以准确确定。射程的歧离可达射程值的10%一15%,所以,一般选用电子线在物质中的最大射程来描述电子线的射程。电子线的最大射程与电子的最大能量之间有一定关系,一般为每厘米2MeV。射程一般采用质量厚度作为单位。电子线穿过一定厚度的吸收物质时,强度减弱的现象称为吸收。射线在物质中的吸收,近似地服从指数衰减规律。使电子线的强度衰减一半的吸收厚度,称为半衰减厚度或半吸收厚度。电子穿过物质时

26、,不仅能量逐步减小,而且能量歧离现象也很严重。高速正电子进人物质后,很快被慢化,然后遇到负电子时,即发生湮灭,放出光子;或者与负电子结合,形成正电子束,衰变后转变成电磁辐射。三、X 线的产生 伦琴(Roentgen)1895 年发现 X 射线。当他用阴板射线管作物理实验时,偶然发现,当阴板射线管加上高压后,距射线管一定距离处的发光晶体变亮。伦琴发现的就是前述的高能电子与物质相互作用后的结果,称之为 X 射线。X 射线具有下列基本性质:X 线没有质量,不受重力的影响;没有电荷,不受电场的影响;和光线一样,直线传播;穿过物质时,强度按指数衰减;不能被聚焦。如图 3-2-1 所示,由入射电子与核外电

27、子碰撞留下空位后,由最外层电子填充此空位,产生特征辐射。它与靶物质的原子结构的能级有关,反映靶物质的特征;由入射电子与原子核相互作用后产生韧致辐射,它是 X 线的主要成分,其能量是连续的,最高 X 射线的能量等于入射电子的打靶能量(图 3-2-2)。图中的虚线表示电子打靶后直接产生的能谱分布;实线表示经过 X 线球管的窗口和油层滤过后的离开 X 线球管的 X 线能谱。这种能谱仍不能直接用于临床治疗,必须加类似滤过板的材料,使其滤去较低能量段的能量而相对保留高能量段的能量,使其减低皮肤剂量而增加深部组织的剂量。图 3-2-2 X 线能谱轫致辐射形成的谱线是连续的。原因主要有两个: 电子进入原子核

28、附近前要经过无数次碰撞,损失的能量不同,故达到原子核附近的入射电子能量也不同;X 线管电压在整流时,从零到最高电压之间在不断波动,电子在绕过原子核时所受的核电场作用不相同。因此,不同能量的入射电子,在不同核电场的作用下,能量损失也不同。不同的能量损失则产生不同波长。连续 X 线的波长和强度分布与下列因素有关:1. 电流以毫安(mA)表示。电流改变,各波长强度分布的形式不变,但每个波长强度按比例增加或减少。也即当电流改变时,X 线的量发生变化,而质不变。2. 电压以千伏(kV)表示。波长的分布随电压而变化,即 X 线的质发生变化,而量不变。电压增加,界限波长和射线谱中具最大强度的波长均向更短波长的方向移动。治疗深部肿瘤时,应增高电压,使 X 线的穿透力加强。界限波长( 0)与电压的关系以下列公式表达:0= V345.12式中, 0的单位为纳米(nm),V 为 X 线机的管电压,以 kV 为单位。从式中可看出,电压越高,则产生的 X 线波长愈短,穿透力越强。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 课件讲义

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。