1、湖南省湘潭市湘潭县 20152016 学年度七年级上学期期末数学试卷 一选择题:(每小题 4 分,满分 40 分,请将正确答案的序号填写在选择题的答题栏内) 1| 3|的相反数是( ) A3 B3 C 3 D 2在 , ,2, 1 这四个数中,最大的数是( ) A B C 2 D1 3如图所示,在数轴上点 A 表示的数可能是( ) A1.5 B1.5 C 2.6 D2.6 4解方程 时,去分母正确的是( ) A2x+1 (10x+1)=1 B4x+1 10x+1=6 C4x+2 10x1=6 D2(2x+1) (10x+1 )=1 5湘潭市是一个国家级红色旅游城市,每年都吸引了众多海内外旅客前
2、来观光旅游,据有关部门 统计,2014 年全市共接待游客 3854 万人次,将 3854 万用科学记数法表示为( ) A3.85410 5 B38.54 106 C3.854 107 D3.85410 8 6下面几种几何图形中,属于平面图形的是( ) 三角形;长方形;正方体; 圆;四棱锥;圆柱 A B C D 72014 年我市有近 4 万名学生参加 2016 届中考,为了解这些学生的数学成绩,从中抽取 1000 名 考生的数学成绩进行统计,以下说法正确的是( ) A这 1000 名考生是总体的一个样本 B近 4 万名考生是总体 C1000 名学生是样本容量 D每位考生的数学成绩是个体 8如图
3、,从 A 地到 B 地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路,这是 因为( ) A两点确定一条直线 B两点之间,线段最短 C垂线段最短 D无法确定 9如图,点 O 在直线 AB 上,射线 OC 平分DOB若COB=35 ,则AOD 等于( ) A35 B70 C110 D145 10如图,甲乙两人同时沿着边长为 30 米的等边三角形,按逆时针的方向行走,甲从 A 以 65 米/ 分的速度,乙从 B 以 71 米/分的速度行走,当乙第一次追上甲时在等边三角形的( ) AAB 边上 B点 B 处 CBC 边上 DAC 边上 二填空题:(每小题 3 分,满分 24 分,请将答案填
4、写在填空题的答题栏内) 11计算 3352+2154= 12代数式 与 3x2y 是同类项,则 ab 的值为 13若代数式 x2+3x5 的值为 2,则代数式 2x2+6x3 的值为 14当 m= 时,关于 x 的方程 x2m+1=0 是一元一次方程 15已知线段 AB,延长 AB 到 C,使 BC= AB,D 为 AC 的中点,若 AB=9cm,则 DC 的长为 16如图,若AOC=BOD,且AOC=70,BOC=50,则 COD= 17如图,扇形 AOB 的面积,占圆 O 面积的 15%,则扇形 AOB 的圆心角的度数是 18为增强居民的节约用电意识,某市对居民用电实行“阶梯收费” ,具体
5、收费标准如下: 一户居民一个月用电量的范围 电费价格(单位:元/度) 不超过 160 度的部分 x 超过 160 度的部分 x+0.4 李磊家 11 月份用电 200 度,缴纳电费 136 元,则 x= 超出部分电费单价是 三解答题:(请写出主要的推导过程) 19计算:1 4(10.5) 2(3) 2 20先化简再求值:(x 2+2x)3(x1) ,其中 x=1 21解方程: 22李华早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时 15 分钟,如果他 骑自行车的平均速度是每分钟 250 米,推车步行的平均速度是每分钟 80 米,他家离学校的路程是 2900 米,求他推车步行了多
6、少分钟? 23如图,BOA=90,OC 平分 BOA,OA 平分COD,求BOD 的大小? 24某市为了更好地加强城市建设,实现美丽梦想,就社会热点问题广泛征求市民意见,方式是发 放调查表:要求每位被调查人员写一个最关心的有关城市建设问题的建议,经统计整理绘制出(a) , (b)两幅不完整统计图,请根据统计图提供的信息解答下列问题: (1)本次上交调查表的总人数为多少? (2)求关心“道路交通” 部分的人数,并补充完整条形统计图 25某市出租车收费标准是:起步价 10 元,可乘 3 千米,3 千米到 5 千米,每千米 1.3 元,超过 5 千米,每千米 2.4 元 (1)若小李乘坐了 x(x5
7、)千米的路程,则小李所支付的费用是多少(用代数式表示)? (2)若小马乘坐的路程为 15 千米,则小马应付的费用是多少? (3)若小张租一次车付了 24.6 元,求小张租车所走的路程 湖南省湘潭市湘潭县 20152016 学年度七年级上学期期末数 学试卷 参考答案与试题解析 一选择题:(每小题 4 分,满分 40 分,请将正确答案的序号填写在选择题的答题栏内) 1| 3|的相反数是( ) A3 B3 C 3 D 【考点】绝对值;相反数 【专题】计算题 【分析】先根据绝对值的意义得到| 3|=3,然后根据相反数的定义求解 【解答】解:| 3|=3, 而 3 的相反数为3, |3|的相反数为 3
8、故选 B 【点评】本题考查了绝对值:若 a0,则|a|=a ;若 a=0,则|a|=0;若 a0,则|a|= a也考查了相反 数 2在 , ,2, 1 这四个数中,最大的数是( ) A B C 2 D1 【考点】有理数大小比较 【分析】求出每个数的绝对值,根据两个负数比较大小,其绝对值大的反而小比较即可 【解答】解:| |= ,| |= ,| 2|=2,| 1|=1, 12, 1 2, 即最大的数是 , 故选 B 【点评】本题考查了绝对值和有理数的大小比较的应用,注意:两个负数比较大小,其绝对值大的 反而小 3如图所示,在数轴上点 A 表示的数可能是( ) A1.5 B1.5 C 2.6 D2
9、.6 【考点】数轴 【分析】根据点 A 位于3 和2 之间求解 【解答】解:点 A 位于 3 和 2 之间, 点 A 表示的实数大于 3,小于 2 故选 C 【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思 想 4解方程 时,去分母正确的是( ) A2x+1 (10x+1)=1 B4x+1 10x+1=6 C4x+2 10x1=6 D2(2x+1) (10x+1 )=1 【考点】解一元一次方程 【专题】计算题;压轴题 【分析】去分母的方法是方程两边同时乘以各分母的最小公倍数 6,在去分母的过程中注意分数线 右括号的作用,以及去分母时不能漏乘没有分母的项 【
10、解答】解:方程两边同时乘以 6 得:4x+2(10x+1)=6, 去括号得:4x+2 10x1=6 故选 C 【点评】在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项 5湘潭市是一个国家级红色旅游城市,每年都吸引了众多海内外旅客前来观光旅游,据有关部门 统计,2014 年全市共接待游客 3854 万人次,将 3854 万用科学记数法表示为( ) A3.85410 5 B38.54 106 C3.854 107 D3.85410 8 【考点】科学记数法表示较大的数 【分析】科学记数法的表示形式为 a10n 的形式,其中 1|a|10,n 为整数确定 n 的值时,要看 把原数变
11、成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同当原数绝对值1 时,n 是正数;当原数的绝对值1 时,n 是负数 【解答】解:将 3854 万用科学记数法表示为:3.85410 7 故选:C 【点评】此题考查科学记数法的表示方法科学记数法的表示形式为 a10n 的形式,其中 1|a|10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值 6下面几种几何图形中,属于平面图形的是( ) 三角形;长方形;正方体; 圆;四棱锥;圆柱 A B C D 【考点】认识平面图形 【分析】根据立体图形和平面图形定义分别进行判断 【解答】解:三角形;长方形; 圆,它们的各部分都在同一个平
12、面内,属于平面图形; 正方体;四棱锥;圆柱属于立体图形 故选:A 【点评】本题考查了认识平面图形有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各 部分不都在同一个平面内,这就是立体图形 72014 年我市有近 4 万名学生参加 2016 届中考,为了解这些学生的数学成绩,从中抽取 1000 名 考生的数学成绩进行统计,以下说法正确的是( ) A这 1000 名考生是总体的一个样本 B近 4 万名考生是总体 C1000 名学生是样本容量 D每位考生的数学成绩是个体 【考点】总体、个体、样本、样本容量 【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的 一
13、部分个体,而样本容量则是指样本中个体的数目我们在区分总体、个体、样本、样本容量,这 四个概念时,首先找出考查的对象从而找出总体、个体再根据被收集数据的这一部分对象找出 样本,最后再根据样本确定出样本容量 【解答】解:A、这 1000 名考生的数学成绩是总体的一个样本,故选项错误; B、4 万名考生的数学成绩是总体,故选项错误; C、1000 是样本容量,选项错误; D、每位考生的数学成绩是个体,故选项正确 故选 D 【点评】本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与 样本,关键是明确考查的对象总体、个体与样本的考查对象是相同的,所不同的是范围的大 小样本容量
14、是样本中包含的个体的数目,不能带单位 8如图,从 A 地到 B 地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路,这是 因为( ) A两点确定一条直线 B两点之间,线段最短 C垂线段最短 D无法确定 【考点】线段的性质:两点之间线段最短 【分析】根据线段的性质:两点之间线段最短即可得出答案 【解答】解:从 A 地到 B 地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路, 这是因为两点之间,线段最短 故选:B 【点评】此题主要考查了线段的性质,正确记忆线段的性质是解题关键 9如图,点 O 在直线 AB 上,射线 OC 平分DOB若COB=35 ,则AOD 等于( ) A3
15、5 B70 C110 D145 【考点】角平分线的定义 【分析】首先根据角平分线定义可得BOD=2BOC=70,再根据邻补角的性质可得AOD 的度 数 【解答】解:射线 OC 平分 DOB BOD=2BOC, COB=35, DOB=70, AOD=18070=110, 故选:C 【点评】此题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分 10如图,甲乙两人同时沿着边长为 30 米的等边三角形,按逆时针的方向行走,甲从 A 以 65 米/ 分的速度,乙从 B 以 71 米/分的速度行走,当乙第一次追上甲时在等边三角形的( ) AAB 边上 B点 B 处 CBC 边上 DAC 边
16、上 【考点】一元一次方程的应用 【专题】几何动点问题 【分析】首先求得乙追上甲所用的时间,然后求得甲所走的路程,从而确定被追上的位置 【解答】解:设乙第一次追上甲需要 x 分钟,根据题意得:(7165)x=60, 解得:x=10, 故甲走的路程为 650 米, 65030=2120, 甲此时在 AB 边上或者按照乙来考虑,乙走的路程为 710 米,71030=2320,也说明此时乙在 AB 边上, 故选 A 【点评】本题考查了一元一次方程的应用,解题的关键是求得乙追上甲所用的时间,难度不大 二填空题:(每小题 3 分,满分 24 分,请将答案填写在填空题的答题栏内) 11计算 3352+215
17、4= 5546 【考点】度分秒的换算 【专题】计算题 【分析】相同单位相加,分满 60,向前进 1 即可 【解答】解:3352+21 54=54106=5546 【点评】计算方法为:度与度,分与分对应相加,分的结果若满 60,则转化为 1 度 12代数式 与 3x2y 是同类项,则 ab 的值为 2 【考点】同类项 【分析】根据同类项的概念得到关于 a,b 的方程组,从而求解 【解答】解:根据题意,得 , 解得 , 则 ab=2 故答案为 2 【点评】此题考查了同类项的概念,即含有相同字母,且相同字母的指数相同的单项式叫同类项 13若代数式 x2+3x5 的值为 2,则代数式 2x2+6x3
18、的值为 11 【考点】代数式求值 【专题】整体思想 【分析】根据观察可知 2x2+6x=2(x 2+3x) ,因为 x2+3x5=2,所以 x2+3x=7,代入即可求出答案 【解答】解:依题意得, x2+3x=7, 2x2+6x3=2(x 2+3x) 3=11 【点评】此题考查的是代数式的转化,通过观察可知已知与所求的式子的关系,然后将变形的式子 代入即可求出答案 14当 m= 1 时,关于 x 的方程 x2m+1=0 是一元一次方程 【考点】一元一次方程的定义 【分析】根据一元一次方程的定义,方程的次数是 1,据此即可列方程求解 【解答】解:根据题意得:2m=1 ,解得:m=1 故答案是:1
19、 【点评】本题考查了一元一次方程的概念和解法一元一次方程的未知数的指数为 1 15已知线段 AB,延长 AB 到 C,使 BC= AB,D 为 AC 的中点,若 AB=9cm,则 DC 的长为 6cm 【考点】比较线段的长短 【专题】计算题 【分析】因为 BC= AB,AB=9cm,可求出 BC 的长,从而求出 AC 的长,又因为 D 为 AC 的中点, 继而求出答案 【解答】解:BC= AB,AB=9cm, BC=3cm,AC=AB+BC=12cm, 又因为 D 为 AC 的中点,所以 DC= AC=6cm 故答案为:6cm 【点评】本题考查了比较线段的长短的知识,注意理解线段的中点的概念利
20、用中点性质转化线段 之间的倍分关系是解题的关键 16如图,若AOC=BOD,且AOC=70,BOC=50,则 COD= 20 【考点】角的计算 【分析】由AOC=BOD 得到AOB+BOC= BOC+DOC,利用等式的性质即可得到 AOB=DOC 【解答】解:AOC= BOD, AOB+BOC=BOC+DOC, AOB=DOC, AOC=70, BOC=50, AOB=COD=7050=20, 故答案为:20 【点评】本题考查了角的计算:会进行角的和、差、倍、分 17如图,扇形 AOB 的面积,占圆 O 面积的 15%,则扇形 AOB 的圆心角的度数是 54 【考点】认识平面图形 【分析】根据
21、扇形的面积,可得答案 【解答】解:由题意,得 r2=15%r2 解得AOB=54, 故答案为:54 【点评】本题考查了认识平面图形,利用扇形的面积得出 r2=15%r2 是解题关键 18为增强居民的节约用电意识,某市对居民用电实行“阶梯收费” ,具体收费标准如下: 一户居民一个月用电量的范围 电费价格(单位:元/度) 不超过 160 度的部分 x 超过 160 度的部分 x+0.4 李磊家 11 月份用电 200 度,缴纳电费 136 元,则 x= 0.6 超出部分电费单价是 1 【考点】一元一次方程的应用 【分析】等量关系为:不超过 160 千瓦时电费+超过 160 千瓦时电费=136 元,
22、依此列出方程求解即 可 【解答】解:根据题意,得 160x+(x+0.4)=136 , 解得 x=0.6; 则超出部分的电费单价是 x+0.4=1 答:x=0.6超出部分电费单价是 1 故答案为:0.6;1 【点评】本题考查了一元一次方程的应用解答本题的关键是读懂题意,设出未知数,找出等量关 系,列方程求解 三解答题:(请写出主要的推导过程) 19计算:1 4(10.5) 2(3) 2 【考点】有理数的混合运算 【分析】运用有理数的运算方法,先算乘方,后算乘除,再算加减,注意符号问题 【解答】解:1 4(10.5) 2( 3) 2, =1 (7) , =1+ , = 【点评】此题主要考查了有理
23、数的运算,以及积的乘方,注意运算顺序 20先化简再求值:(x 2+2x)3(x1) ,其中 x=1 【考点】整式的加减化简求值 【分析】首先根据整式的加减运算法则化简原式,然后将 x=1 代入化简后的式子,即可求得答 案 【解答】解:(x 2+2x) 3(x1)=x 2+2x3x+3=x2x+3, 当 x=1 时,原式=(1) 2(1)+3=1+1+3=5 【点评】此题考查了整式加减运算与化简求值此题比较简单,解题的关键是注意细心,注意先化 简再求值 21解方程: 【考点】解一元一次方程 【专题】计算题;一次方程(组)及应用 【分析】方程去分母,去括号,移项合并,把 x 系数化为 1,即可求出
24、解 【解答】解:去分母得:2(x1) (3x1)=8, 去括号得:2x2 3x+1=8, 移项合并得:x=9, 解得:x= 9 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键 22李华早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时 15 分钟,如果他 骑自行车的平均速度是每分钟 250 米,推车步行的平均速度是每分钟 80 米,他家离学校的路程是 2900 米,求他推车步行了多少分钟? 【考点】一元一次方程的应用 【分析】根据关键语句“到学校共用时 15 分钟,骑自行车的平均速度是 250 米/分钟,步行的平均速 度是 80 米/分钟他家离学校的距离是 290
25、0 米”可得方程,解方程即可求解 【解答】解:设他推车步行了 x 分钟,依题意得: 80x+250(15 x)=2900, 解得 x=5 答:他推车步行了 5 分钟 【点评】此题主要考查了一元一次方程的应用,关键是弄清题意,根据“他家离学校的路程是 2900 米”列出方程 23如图,BOA=90,OC 平分 BOA,OA 平分COD,求BOD 的大小? 【考点】角平分线的定义 【分析】先根据角平分线的定义得出COA 的度数,再根据角平分线的定义得出 AOD 的度数,再 根据BOD=AOB+AOD 即可得出结论 【解答】解:BOA=90 , OA 平分 BOA, COA=45, 又 OA 平分C
26、OD, AOD=COA=45, BOD=90+45=135 【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的 射线叫做这个角的平分线是解答此题的关键 24某市为了更好地加强城市建设,实现美丽梦想,就社会热点问题广泛征求市民意见,方式是发 放调查表:要求每位被调查人员写一个最关心的有关城市建设问题的建议,经统计整理绘制出(a) , (b)两幅不完整统计图,请根据统计图提供的信息解答下列问题: (1)本次上交调查表的总人数为多少? (2)求关心“道路交通” 部分的人数,并补充完整条形统计图 【考点】条形统计图;扇形统计图 【分析】 (1)根据环境保护所占的百分
27、比和环境保护的人数,即可求出总人数; (2)用整体 1 减去其它所占的百分比,求出关心“道路交通 ”部分的人数所占的百分比,再乘以总 人数,即可得出关心“道路交通”部分的人数,从而补全统计图 【解答】解:(1)根据题意意得: 90030%=3000(人) , 答:本次上交调查表的总人数为 3000 人; (2)关心“道路交通” 部分的人数所占的百分比是: 130%25%20%5%=20%, 则关心“道路交通” 部分的人数是:300020%=600(人) 补全条形统计图如下: 【点评】本题考查的是条形统计图和扇形统计图,读懂统计图,从统计图中得到必要的信息是解决 问题的关键,条形统计图能清楚地表
28、示出每个项目的数据;扇形统计图直接反映部分占总体的百分 比大小 25某市出租车收费标准是:起步价 10 元,可乘 3 千米,3 千米到 5 千米,每千米 1.3 元,超过 5 千米,每千米 2.4 元 (1)若小李乘坐了 x(x5)千米的路程,则小李所支付的费用是多少(用代数式表示)? (2)若小马乘坐的路程为 15 千米,则小马应付的费用是多少? (3)若小张租一次车付了 24.6 元,求小张租车所走的路程 【考点】一元一次方程的应用 【分析】 (1)根据题意可以知道前 3 千米支付 10 元,3 千米到 5 千米支付 1.3(53)元,超过 5 千米支付的费用为 2.4(x5) ,从而可以求得问题的答案; (2)把小马乘坐的路程数据代入(1)的代数式可求小马应付的费用是多少; (3)可以判断出 24.6 元车费是否在这个范围内,用 x5 的关系式计算即可求解 【解答】解:(1)小李所支付的费用是 10+2.6+2.4(x5)元; (2)10+2.6+2.4 (15 5) =10+2.6+24 =36.6(元) 答:小马应付的费用是 36.6 元; (3)依题意有 10+2.6+2.4(x5)=24.6 , 解得 x=10 答:小张租车所走的路程是 10 千米 【点评】本题考查一元一次方程的应用,列代数式和代数式的求值,解题的关键是明确题意,根据 题意列出符合要求的代数式