高一数学科第二学期期末统一考试2.doc

上传人:丁** 文档编号:4186855 上传时间:2019-10-02 格式:DOC 页数:10 大小:2.26MB
下载 相关 举报
高一数学科第二学期期末统一考试2.doc_第1页
第1页 / 共10页
高一数学科第二学期期末统一考试2.doc_第2页
第2页 / 共10页
高一数学科第二学期期末统一考试2.doc_第3页
第3页 / 共10页
高一数学科第二学期期末统一考试2.doc_第4页
第4页 / 共10页
高一数学科第二学期期末统一考试2.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、高一数学科第二学期期末统一考试 数学科试卷 本试卷分第 I 卷(选择题) 、第 II 卷(非选择题)两部分. 共 100 分,考试时间 100 分钟. 第 I 卷(选择题共 40 分) 注意事项: 1. 答第 I 卷前,考生务必将自己的姓名、统考考号、座位号、考试科目用铅笔涂写 在答题卡上. 2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用 橡皮擦干净后,再选涂其它答案,不能答在试题上. 3. 可以使用科学型计算器. 4. 考试结束,将答题卡与第卷交回. 一、选择题(本大题共 10 小题,每小题 4 分,共 40 分. 在每小题给出的四个备选项中, 只有一项是符合题

2、目要求的.) 1. =tan30 A. B. C. D. 333 2. 把二进制数 110011(2)化为非二进制数,下列结果不正确的是 A. 51 B. 201(5) C. 123(6) D. 36(8) 3. 函数 的部分图象如右图,则 、 可以取的一组值是)sin(xy A. ,24 B. 36 C. , D. 54 4. 已知 ,且向量 与 平行,则 k=(1,0)(2,)abkab3 A. B. C. D. 3137xOy 1 2 3 i=10 s=1 DO s= s * i i = i1 LOOP UNTIL “条件” PRINT s END (第 8 题) 5. 已知 ,则 的值

3、是1sin()43cos()4 A. B. C. D. 2323 6. 某工厂生产的 200 件产品的重量(单位: kg)的频率分布直方图如右图所示,则重量在 的产品大约有40,1 A. 160 件 B. 120 件 C. 80 件 D. 60 件 7. 已知 是第四象限角,则 可化简为24sini A. B. 1sin21 C. D. si 8. 如果右边所给出的程序执行后输出的结果是 720,那么 在程序 until 后面的“条件”应为 A. i 9 B. i 7 C. i =8 D. i8 9. 某商店购进 12 件同品牌的衣服,其中 10 件是正品,其余 2 件是次品,从中无放回地 任

4、取 2 件,则取出的 2 件衣服中,至少有 1 件是次品的概率是 A. B. C. D. 1353037 10. 将最小正周期为 的函数 的图象向()cos)sin()(0,)2fxx 左平移 个单位,得到偶函数图象,则满足题意的 的一个可能值为4 A. B. C. D. 51271244 频率/组距 0.8 0.6 0.4 0.2 0 40 40.5 41 41.5 42 重量 得 分 评卷人 第二学期期末统一考试 数学科试卷 第 II 卷(非选择题共 60 分) 题 号 二 15 16 17 18 19 总分 总分人 复分人 二、填空题(本大题共 4 小题,每小题 4 分,共 16 分,把

5、答案 填在题中的横线上) 11. 若向量 与 垂直,则 = . (,1)axr(4,)bxr 12. 已知 ,则 . 3cos52sin 13. 某校 1000 名学生中,O 型血有 400 人,A 型血有 250 人,B 型血有 250 人,AB 型血 有 100 人,为了研究血型与性格的关系,按照分层抽样的方法从中抽取样本. 如果从 A 型 血中抽取了 10 人,则从 AB 型血中应当抽取的人数为 . 14. 由物理中矢量运算及向量坐标表示与运算,我们知道: (1)两点等分单位圆时有相应关系式为: ;sin()0,cos()0 (2)四点等分单位圆时有相应关系式为: ,3sin()sin(

6、)si()022 .cococ 由此我们可以推测,三点等分单位圆时的相应关系式为 , . 三、解答题(共 5 个题. 15、16、17 题各 8 分, 18、19 题各 10 分,合计 44 分) 15. 已知向量 , (2,)a ( ). 设函数 .(sin2),cos4bxRx)fxbA (1)求 的值; (2)求 的最大值及对应的 值.f)(f得 分 评卷人 16. 已知 .|2,|1ab (1)若 的夹角 为 ,求 ;(精确到 0.001),40|ab (2)若 与 垂直,求 与 的夹角 . 17. 在一次商贸交易会上,一商家在柜台开展促销抽奖活动, 甲、乙两人相约同一天上午去该柜台参

7、与抽奖. (1)若抽奖规则是从一个装有 6 个红球和 4 个白球的袋中无 放回地取出 2 个球,当两个球同色时则中奖,求中奖概 率; (2)若甲计划在 9:009:40 之间赶到,乙计划在 9:2010:00 之间赶到,求甲比乙提前到达的概率. 得 分 评卷人 得 分 评卷人 18. 已知函数 .1()3sin(),24fxxR (1)画出函数 在长度为一个周期的闭区间上的简图; (2)将函数 的图象作怎样的变换可得到 的图象? iy ()fx (3)设函数 ,求 的周期、单调递减区间.()|gxf()gx得 分 评卷人 19. 某“海之旅”表演队在一海滨区域进行集训,该海滨区域 的海浪高度

8、y(米)随着时间 t(0t24,单位:小时) 而周期性变化. 为了了解变化规律,该队观察若干天后, 得到每天各时刻 t 的浪高数据的平均值如下表: (1)试画出散点图; (2)观察散点图,从 、 、yaxbsin()yAtb 中选择一个合适的函数模型,并求出该cos()yAt 拟合模型的解析式; (3)如果确定当浪高不低于 0.8 米时才进行训练,试安排白 天内进行训练的具体时间段. t(时) 0 3 6 9 12 15 18 21 24 y(米) 1.0 1.4 1.0 0.6 1.0 1.4 0.9 0.4 1.0 得 分 评卷人 第二学期期末统一考试 数学科试卷参考答案 一、BDCAB

9、CBDDA 二、11. 2 12. 13. 4310 14. ,2sin()sin()0324cos()cos()033 三、 15解:(1) . (1 分)()i(2)4fxabxA . (3 分)2sin)cos4f (2) (4 分)()c2in2cosin2cos4xxxx . (5 分)2sin() 当 ,即 时, (7 分)4xk3,8xkZ . (8 分)ma()f 16. 解:(1)由 , (2 分)|cos21cos402csbA 得 .(3 分)222|() 3os40ab A . (4 分)|3cs4073a (2) 与 垂直, . (5 分)b()0 即 , . (6

10、分)2|1A1abA 又 , (7 分)2cos|a 与 的夹角 . (8 分)b45 17. 解:(1)从袋中 10 个球中摸出 2 个,试验的结果共有 (种). (1 分)109452 中奖的情况分为两种: (i)2 个球都是红色,包含的基本事件数为 ;(2 分) 651 (ii)2 个球都是白色,包含的基本事件数为 . (3 分)4 所以,中奖这个事件包含的基本事件数为 15+6=21. 因此 ,中奖概率为 .(4 分)1745 (2)设两人到达的时间分别为 9 点到 10 点之间的 x 分钟、y 分钟. 用 表示每次试验的结果,则所有可能结果为(,)xy ; (5 分),|04,260

11、xy 记甲比乙提前到达为事件 A,则事件 A 的可能结果为 . (6 分)(,)|,Ay 如图所示,试验全部结果构成区域 为正方形 ABCD. 而 事件 A 所构成区域是正方形内的阴影部分. (7 分) 根据几何概型公式,得到 . 221407()8SP阴 影正 方 形 所以,甲比乙提前到达的概率为 . (8 分) 18. 解:(1)函数 的周期()fx241T 由 ,解得 . 列表如下:30,242x3579,22x x 124 0 2 322 3sin( )x0 3 0 3 0 (3 分) 描出五个关键点并光滑连线,得到一个周期的简图. 图象如下. (4 分) (2)方法一:先把 的图象向

12、右平移 个单位,然后把所有点的横坐标扩大为原sinyx 来的 2 倍,再把所有点的纵坐标扩大为原来的 3 倍,得到 的图象. (7 分)()fx 方法二:先把 的图象所有点的纵坐标扩大为原来的 3 倍,然后把所有点的横坐i 标扩大为原来的 2 倍,再把图象向右平移 个单位,得到 的图象. (7 分) 2()f (3)方法一: 的周期为 . (8 分)()gx14T 解不等式 ,(9 分)1,24kkZ 得 52,x 所以,函数 的单调递减区间为 . (10 分)()g352,kkZ 方法二:作出 的图象,由图可知, 的周期为 . (8 分)x()gx2T 单调递减区间为 . (10 分)352,kZ 19. 解:(1)散点图如图所示 (2 分) (2)由散点图可知,选择 函数模型较为合适. (3 分)sin()yAtb 由图可知, ,T=12, .1.40625A1.4062b 则 , . (5 分)sin()yt 把 t=0 代入,得 ,即 . (6 分)060 所以 (0t 24). (7 分)2sin15y (3)由 (0t24) ,即 . (8 分)4i6t1sin62t 则 ,得 (9 分)722kk17,ktkZ 从而 或 或 .0t19t34t 所以,应在白天 11 时19 时进行训练. (10 分)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 试题真题

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。