完善代数式及其运算的知识结构.DOC

上传人:天*** 文档编号:1522028 上传时间:2019-03-04 格式:DOC 页数:4 大小:43KB
下载 相关 举报
完善代数式及其运算的知识结构.DOC_第1页
第1页 / 共4页
完善代数式及其运算的知识结构.DOC_第2页
第2页 / 共4页
完善代数式及其运算的知识结构.DOC_第3页
第3页 / 共4页
完善代数式及其运算的知识结构.DOC_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、完善代数式及其运算的知识结构人教版义务教育教科书 数学八年级下册第 16 章“二次根式“介绍绍章建跃(人民教育出版社中学数学室)因为字母符号表示数,所以我们可以将字母和数(实际上都是符号)一起进行各种各样的运算,而且在运算上满足运算律。前面已经学习了单项式、多项式和分式等概念和运算,从中可以发现,式的运算在本质上就是对符号运用运算律所进行的形式运算。例如,两个多项式相乘,就是利用分配律把它归于单项式的乘积之和来运算,而单项式的乘积则是用乘法的交换律、结合律和指数运算法则来计算。本章主要讨论如何对数和字母开平方而得到的特殊式子二次根式的加、减、乘、除运算。通过本章学习,学生将建立起比较完善的代数

2、式及其运算的知识结构,并为勾股定理、一元二次方程、二次函数等内容的学习做好准备。1 内容概述在“实数”一章中,学生已经学习了平方根、算术平方根的概念,以及利用平方运算与开平方运算的互逆关系求非负数的平方根和算术平方根的方法。在此基础上,本章将进一步研究二次根式的概念、性质和运算,目的是以二次根式这一类典型的“式”为载体,进一步学习对数字、符号进行运算的方法,体会通过符号运算所得结果的一般性,培养学生的符号意识和运算能力。本章重点是二次根式的运算和运算法则;难点是在理解二次根式的性质和运算法则的基础上,养成良好的运算习惯。实际上,运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,这也是在整

3、个“数与代数”领域中需要注意的问题。关于本章中如何加强符号意识、运算能力的培养问题,我们在后面的教学建议中再来讨论。本章分为三节。第 1 节研究二次根式的概念和性质。教材通过几个具体问题,引导学生根据已学的平方根和算术平方根知识写出结果,并概括它们的共同特点,引出二次根式的概念。理解被开方数不能是负数的要求是理解二次根式概念的关键,教材结合例题对此进行了具体分析。一般地,代数学的研究遵循“概念一性质一公式”的路线,因此教材接着采用从具体到抽象的方法,归纳出二次根式的性质 =a (a0),并根据算术平方根的定义对这条性质进行了2a分析。对于另一条性质 (ao),教材采用了同样的处理方式。2在二次

4、根式的运算中,乘除运算比加减运算更容易,并且是加减运算的基础,因此教材在第 2 节安排二次根式的乘除。显然,运算法则是运算的依据,因此教材通过“探究”栏目,引导学生利用二次根式的性质,从具体数字的运算中发现规律,进而归纳得出二次根式的乘法法则、除法法则。最简二次根式的概念是加减运算的基础,实际上也是对二次根式运算结果的一种要求,同时也为二次根式的运算明确了方向。第 3 节是二次根式的加减运算。将二次根式化为最简二次根式后,二次根式的加减运算实际上就是对被开方数相同的二次根式作“合并同类项” 。由于“在有理数范围内成立的运算律在实数范围内仍然成立” ,因此二次根式的加减运算实际上是利用了分配律。

5、教材按照这样的思路,采用归纳的方法,从特殊到一般,引导学生概括了二次根式加减运算法则,并通过几个二次根式混合运算的例题引导学生认识二次根式的性质和运算法则、整式的性质和运算法则之间的一致性。2 编写时考虑的主要问题本章是初中阶段“数一式”内容的最后一章。实际上,二次根式并不是一个全新的概念,它是一个非负数,是非负数的算术平方根概念的一般表示。因此,本章内容的核心是以“二次根式”这一特殊的“式”为载体,进一步引导学生体会运算在代数中的核心地位,学习用运算法则进行运算,体会运算法则的逻辑相容性,体会数系运算律在代数中的基础地位。21 一以贯之地进行代数基本思想和方法的教学我们知道, “代数学的根源

6、在于代数运算,也即加、减、乘、除、乘方、开方等。所有能用代数运算表达的问题统称之为代数问题。 ”而“学习代数学,就是要学会善用运算律去有效、有系统地解决多种多样的代数问题。 ”前面,学生在“有理数”一章进行了较系统的“数及其运算”的学习,初步建立了研究数系扩张、运算法则和运算律的基本套路,为后续学习奠定了必要的代数基本思想和基本方法的基础。在“实数”一章中,借助完全平方数、完全立方数,学生已经了解了平方根、立方根的概念和求法;借助 、 的几何表示,以及2用有理数逼近 等方法,学生对实数的概念和运算有了初步体会。在“整式的2加减” “整式的乘法与因式分解” “分式”等章中,学生学习了式的运算法则

7、以及用运算律进行式的运算的方法,这些都为本章的学习打下了思想方法的基础。二次根式作为一类特殊的数,为学生进一步理解实数及其运算提供了载体。因此,如何使学生在本章的学习中进一步体会代数学的基本思想和基本方法是编写时考虑的一个核心问题。具体做法上,遵循如下思路展开:二次根式的概念(定义研究对象) 一二次根式的性质一二次根式的运算(运算法则和运算律的应用) 其中, “概念” “性质”是“运算”的基础,在“运算”中自然地提出“如何算”的问题,并运用运算律得到相应的运算法则,从而实现有效地、系统地进行二次根式的运算。因为“归纳法是整个代数学的基本大法和基本功” , “归纳地去探索、发现,然后归纳地定义,

8、再归纳地论证”是解决代数问题的基本过程,所以教材特别注意归纳法的应用。例如,通过具体实例,从正数的平方根、算术平方根中提炼出研究对象二次根式;通过具体实例归纳二次根式的性质;通过具体实例说明 (a0)是一个实数,进而明确“这一类实数满足怎样的运算法则”的问题;a所有运算法则都是采用从特殊到一般的归纳方式得出的;等等。22 以运算为核心,加强运算能力的培养我们已经反复地提及,运算是整个代数学的根源所在。实际上,在数的扩充过程中, “引入一种新的数,就要研究它的运算;定义一种运算,就要研究它的运算律” ,这是代数的基本思路。这里,二次根式本身就是运算的结果对非负实数进行开平方运算,一般化后就得到了

9、二次根式,接着的研究主题就是“对这一类数如何进行运算” 。综上,从数学教育的整体上看,在义务教育阶段让学生学习二次根式的概念、性质和运算法则,主要目的是以这一类实数(重点是无理数)的运算问题为载体,使学生对实数运算形成基本完整的认识。教材也充分体现了这一点。例如,对于二次根式的加减运算,在“实数”一章中已经以( 、 为例,使学生对“有理数的运算律和运算法则在32)32实数的范围内仍然成立”有所体验,本章在此基础上,利用分配律给出了二次根式加法、减法的运算法则,使学生进一步体会运算律在数的扩充过程中的一致性。值得注意的是,虽然义务教育数学课程标准(2011 年版)(以下简称课标(2011 年版)

10、 对本章的内容和要求规定为“了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算” ,这样就把本章的学习对象限定在了“根号下为数的二次根式” ,但这是最低要求。为了使学生更全面地了解二次根式的运算,提高学生的运算能力,也为今后高中阶段的数学学习打下必要的基础,教材在正文中设置了“选学例题” ,采用举例的方式,让那些学有余力的学生能够学到“根号下为字母的二次根式 的运算。由于数式通性,只要将二次根式中的实数看成字母,二次根式的运算实际上就是整式的运算,因此我们相信,这样的内容是可以被大多数学生所接受的。为了加强二次根式与整式之间的

11、联系,强化用整式的运算法则、乘法公式等简化二次根式运算的方法,进而培养学生的运算能力,教材采取举例的方式,在二次根式混合运算的例题中,强调了利用多项式的乘法法则和乘法公式进行运算,突出了二次根式运算的本质,并用“小贴士”醒目地标明;在小结中,引导学生概括,指出“二次根式的加减法与整式的加减法类似,只要将根式化为最简二次根式后,去括号与合并被开方数相同的二次根式就可以了。二次根式的乘法与整式的乘法类似,以往学过的乘法公式等都可以使用。二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去” 。3 教学建议31 注意代数学的整体性作为初中阶段“数一式”内容的最后一章,本章不仅

12、承担二次根式知识的教学任务,而且也承担整理“数与式”的内容、方法和基本思想的任务。因此,教学时一定要有整体观。具体包括:(1)对于二次根式概念的教学,要从运算的角度提出学习任务,在分析开方运算的意义中使学生认识被开方数为非负数的合理性,并通过简单的变式,使 学生养成“看到根号就要注意被开方数的符号”的习惯。(2)对于二次根式的性质,要注意从“考查特例”的角度提出问题,并注意从联系性中发现它们的关系。实际上,从算术平方根的意义可以直接得出=a (a0) 和 (ao);同时,与二次根式的乘法法则相联系,这一2a2a性质还可以看成是 在 a=b 时的特例。b(3)对于二次根式的运算,要注意放在“代数

13、运算”这个大系统下,加强“从概念到法则” “利用运算律进行运算利用乘法公式简化运算”等思想方法的教学。总之,要在“二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用”的思想指导下,展开二次根式运算法则的学习和运算技能的训练。(4)由于本章内容与以前所学的实数内容有较多的联系,在思考问题的方法上与整式的内容又有很多相通之处,因此,教学中一定要从联系性上多做文章,使学生通过本章学习建立完整的代数知识结构,并进一步体会代数问题的基本研究方法。当然,这种“联系性的教学”应该结合具体内容进行。例如,通过具体例子引导学生探索、发现,二次根式的加减运算核心是“合并同类二次根式”

14、,而“同类二次根式”可以类比“同类项”得到;还可以通过具体例子,引导学生发现整式中的乘法公式在二次根式的运算中也成立;等等。32 加强归纳法,使学生经历特殊到一般的认识过程前边已指出,教材对本章内容的处理,一以贯之地用“从具体数字的算术平方根的运算中观察规律,归纳得出二次根式的性质、运算法则”的方式展开。因此,教学时一定要根据教材的这一编写意图,让学生通过观察、思考、讨论等,经历从特殊到一般的过程,归纳得出有关结论。例如,对于二次根式的乘法法则和除法法则,都应该先让学生利用二次根式的概念和性质进行一些具体数字的计算,并观察所得结果,发现二次根式相乘(除)与积(商)的算术平方根之间的关系;然后让

15、学生自己举例,利用发现的规律进行验证性计算,最后归纳出二次根式的乘法、除法法则。 33 加强运算技能训练。提高运算能力在课标(2011 年版)提出的十个关键词中,与本章相关的关键词很多。例如,数感(数及其运算结果估计方面)、符号意识(用符号表示数、进行运算和推理,得到具有一般性的结论)、运算能力(根据法则和运算律正确、合理、简捷地进行运算)、推理能力(通过归纳和类比得出性质、运算法则,从运算法则出发进行计算)等。这与义务教育数学课程标准(实验稿)有较大的不同,我们应该关注到这种变化,在本章教学中更加注重运算能力的培养,具体地又要落实在运算技能的训练上。运算技能的训练是代数教学的基本任务。本章的

16、“训练点”有两个方面:一是“用二次根式的运算法则进行运算” ,核心是有效地利用二次根式的性质很法乘法法则、除法法则,其中将各式转化为最简二次根式是关键步骤;二是运算习惯的培养与“数感” “符号意识”等相关,具体可以从“先观察,后计算”“先化为最简二次根式,后计算” “利用乘法公式进行计算”方面着手。由于本章在整个中学阶段具有基础性地位,因此,虽然教材以“让学生理解二次根式的性质和运算,并会熟练运用法则进行运算”为重点,突出二次根式的性质和法则的数学本质,而对分母有理化、同类二次根式等概念采取淡化处理,只结合具体例子进行说明,但这并不意味着可以削弱分母有理化,以及将二次根式化成最简二次根式,再合并同类二次根式的方法等的教学,同时要注意, 课标(2011 年版) 作出的“根号下仅限于数的二次根式的四则运算”的限制是最低要求,教学时应当适当加强含有字母的二次根式的化简、四则运算。当然,题目不能复杂化,不应过分关注运算技巧。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 重点行业资料库 > 1

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。