1、 外文翻译 原文 Shift to a low carbon society through energy systems design Material Source: Special Topic on Engineering Thermophysics Author:Toshihiko Nakata,Mikhail Rodionow, Diego Silva,Joni Jupesta Global environmental degradation is one of the serious threats facing humankind as a result of its expan
2、ding activities around the world. Along with the development of society, vast quantities of greenhouse gases (GHGs) have been discharged into the atmosphere, namely carbon dioxide(CO2), methane and other non-CO2 gases. Energy activities are the main source of anthropogenic GHG emissions and they rep
3、resented 61% of total global GHG emissions in the year 2000 1. Approximately 30% of the anthropogenic greenhouse effect can be attributed to non-CO2 GHGs 2. Rising concern about the impact of climate change has led to the definition of long-term sustainability of society looking forward to the reduc
4、tion of GHGs. This interpretation of sustainable development has been termed the “low carbon society” (LCS). The sustainable development concept, introduced by the Brundtland Commission in 1987, refers to “development that meets the needs of the present without compromising the ability of future gen
5、erations to meet their own needs”. Given the relevance of energy to the stability and progress of society, and the fact that energy-related activities are the major source of GHG emissions, the LCS vision can be translated into the achievement of sustainable development in an economy that is less de
6、pendent on fuels with high-carbon content. Transition to the LCS has important implications on the economy, environment and energy, also referred to as 3Es or trilemma concept. The 3Es concept brings together three goals: economic development, procurement of energy sources, and environmental protect
7、ion. Elements within these three aspects interact with each other in complex ways. In this context, national governments and the international community are strengthening their efforts to formulate and implement measures and policies to curb GHG emissions across several sectors in short, mid and lon
8、g terms. Policy makers are confronted with the evaluation of these policies and their possible impacts on the 3Es. The complexity of these interactions can be better understood through the design of energy systems and energy models. The most common classification of energy models distinguishes betwe
9、en top-down and bottom-up models 3. These models serve as support systems in decision-making for engineers in order to select environmentally sound technologies. The energy supplies in energy models must contain certain economic value in order to be considered as components of the energy system desi
10、gn. Several applications of energy models consider GHG mitigation alternatives. These applications are diverse, analyzing different sectors and geographical coverage, and making emphasis on different energy resources and technologies. This paper discusses the possibility of realizing the LCS with re
11、spect to the reduction of GHG emissions from energy-related activities, and the correspondent implications on the design of energy systems by means of energy models. The discussion is elaborated around four aspects characterizing the shift to the LCS in energy systems. These aspects include the util
12、ization of low-carbon and carbonless energy resources, the penetration of advanced conversion technologies for the efficient use of energy resources, the implementation of measures specific to each energy demand sectors, and the inclusion of other dimensions besides the 3Es in the assessment of the
13、possibility of the LCS. The paper focuses on four groups of energy model applications illustrating each of the aspects mentioned above, namely models describing the utilization of wastes, models analyzing the penetration of clean coal technologies, transportation sector models, and rural energy mode
14、ls. The alternatives to mitigate GHG emissions from energy related activities are the object of energy policies and energy systems design. The supply of primary energy through energy resources represents the supply side of energy systems. Energy resources can be separated into three main categories:
15、 fossil fuels, nuclear resources, and renewable resources. Currently, the worlds energy supply is largely based on fossil fuels. These energy resources exist in limited quantities, and their combustion is considered one of the main causes of climate change. In 2006 the world primary energy consumpti
16、on accounted for about 12 Gtoe (giga tonne oil equivalent), with fossil fuels constituting 81%. In contrast to fossil fuels, renewable energy is obtained from sources that are non-depletable. The most common renewable energy resource has a biological origin, also termed biomass. Energy generation fr
17、om these sources does not contribute to climate change, given that their use does not involve the emission of GHGs. Furthermore, CO2 emissions resulting from the combustion of biomass are regarded as being carbon neutral. Currently, renewable energy resources supply 13% of the world primary energy d
18、emand, and represent 18% of the total electricity generation, as of year 2006. Energy harnessed from radioactive materials, also termed nuclear energy, is used to generate electricity in nuclear power plants. This source of energy shared 6% of global energy consumption in 2006. Nuclear energy supply
19、 is growing in countries such as China and India. In contrast, the utilization of nuclear energy has been declining gradually, as a result of phase-out policy in European countries such as Germany, Belgium and Sweden 5. Conversion technologies are the central part in the architecture of an energy sy
20、stem. Their role in the energy system is to transform energy resources coming from the supply side into energy forms suitable for delivery or direct use by the demand side. Several energy conversion technologies are available, depending on the type of energy resources that they use. Conventional tec
21、hnologies are based principally on the combustion of fossil fuels: coal, oil, and gas fired power plants. These conversion technologies are the source of large quantities of GHG emissions, specifically CO2. In contrast, conversion technologies for the production of energy from renewable energy resou
22、rces do not emit GHGs, and are known as carbon neutral technologies. The energy demanded by end users in different activities in any society is grouped in sectors representing the main components of an economy. The demand side is categorized into four sectors of end users: the residential sector, th
23、e commercial sector, the industrial sector, and the transportation sector. In addition to these four sectors, agricultural activities are merged into the industrial sector or the residential sector. The industrial and transportation sectors comprise the largest shares in energy consumption, equivale
24、nt to 27% and 28% of global final energy consumption, respectively 5. It is worth noting that among all the sectors, the transportation sector has had the highest growth in energy consumption in the last decade. Several different alternatives exist in the present in order to realize the vision of th
25、e LCS. The inclusions of alternative sources of energy, such as biomass and wastes, are fundamental choices from the supply side. Renewable energy technologies represent the core of alternatives regarding energy conversion technologies. Demand side measures focused on the improvement of energy effic
26、iency and more careful use of energy. The realization of the LCS involves shift from conventional to low carbon energy technologies. Analyzing the possibility of the transition to the LCS and the way this transition may be achieved in the future is a complex task for decision-making in energy planni
27、ng. The assessment and design of energy systems can be performed by means of energy models based on mathematical formulations representing the interactions of the multiple components of the energy system. These models can give more credibility to proposals targeting the mitigation of GHGs. The poten
28、tial impact of climate change due to emissions from energy activities in forthcoming decades can be minimized driving development towards a low carbon path as described by the LCS vision. The feasibility of this vision depends on how the energy system is designed. Energy models help to clarify the e
29、ffectiveness and applicability of technologies included in the system design. Based on this it is possible to evaluate the needs in research and development and the barriers for integrating innovative technologies. Model applications studying the utilization of wastes as alternative energy resources
30、 show that system designs must integrate with MSW management systems. The double role of MSW as fuels and materials that can be recycled leads to a broader range of technologies for their treatment. Schemes for the economic valuation of GHGs emission reductions provided by WTE technologies together
31、with the technological progress are important for the diffusion of these technologies, especially in developing countries. Penetration of clean coal technologies showed by model applications is strongly linked to technology learning. The large investment entailed for the introduction of these techno
32、logies can be balanced with the significant emission reductions that can be obtained by means of market mechanisms like carbon taxes. Such measures are crucial for effective use of CCTs in developing countries. The feasibility of shifting to cleaner fuels and vehicles in the transportation sector is
33、 suggested by energy models. Suitable alternatives include biofuels for the mid-term, and vehicles using fuel cells and hybrid technologies for the long-term. Barriers to the penetration of low carbon alternatives can be overcome considering technological progress and the application of taxes. Energ
34、y models for rural energy in developing countries need to expand their scope and reliability. They show how renewable technologies and shifting from traditional fuels can bring along benefits related to the LCS and human development. The output from studies using energy models, though useful for ass
35、essing the feasibility of energy systems in alternative scenarios, should not be assumed as certain forecast. Instead, energy models help to raise the uncertainties surrounding the effective design of energy systems considering impacts on the global environment. The credibility of models can be enha
36、nced with a good quality of researchs approach, methodology and data. This is especially important when addressing the LCS targets in energy system design because of the long-term nature of the LCS vision.Therefore, models should not be understood as tools for restraining decision making, but rather
37、 be taken as supporting tools to obtain a clear image for assessment of the alternatives available for policy making. 译文 通过能源系统设计向低碳社会转变 资料来源 :工程热物理专题研究 作者: 中田俊彦 等 世界范围内不断扩大的人类活动所导致的全球环境恶化问题是人类面临的严重问题之一。随着社会的日益发展,大量温室气体(如二氧化碳、甲烷以及其他一些非二氧化碳气体)被排放到了大气中。而能源活动是人为温室气体排放的主要来源,在 2000 年能源活动排放的温室气体占到了当年全球温室气
38、体总排量的 61%。大约只有 30%的温室气体应归因于非二氧化碳气体的排放。 对于气候变化带来的影响的不断关注和担忧, 促使了人们对于可持续社会定义的探索,以期减少温室气体的排放。这种可持续发展的社会现已被命名为“低碳社会”。可持续发展概念,是布伦特兰委员会在 1987 年首次提出来的,它是指“这种发展既要满足当代人的需求,又不能损害后代人满足其需求的能力”。考虑到能源相对性能转化为社会的稳定和进步,以及与能源相关的活动是温室气体主要来源的事实,在一个较少使用高碳燃料的经济体下,低碳社会的视角能促使转化为可持续发展带来的成就。向低碳社会转型不仅会给经济,环境和能源带来很重要的影响,而且会促使
39、3Es 或三元悖论等概念的形成和发展。3Es 即是将三个目标结合在一起:经济发展、能源采购和环境保护。包含在这三个目标中的各种要素以一种很复杂的方式相互作用。在这样一个背景下,国家政府和国际组织加强协作,制定并实施能覆盖若干行业的短、中、长期的措施和政策,以制止温室气体的排放。决策者面临的不仅是来自第三方关于这些政策的评价,他们更需要考虑的是这些政策会给 3Es 带来的影响。其实这种复杂的相互作用关系只有通过能源系统和能源模型的设计才能被很好的理解。 对于能源模型最常见的分类有两种,即自上而下和自下而上的模型。这些模型能为工程师在制定决策时提供很有价值 的参考,从而能更好地制定出环境无害化技术
40、。在能源模型中的能源供应必须具备某种经济价值,这样才能被考虑为能源系统设计中的一部分。能源模型的一些应用价值被认为是减少温室气体排放的替代品。这些应用是多种多样的,能起到分析不同行业的作用,而且在地理上也是全面覆盖的,这些应用强调不同的能源来源和技术。本论文将讨论在考虑到减少源于能源相关活动排放的温室气体的前提下实现低碳社会的可能性,且通过能源模型来分析对能源系统设计带来的影响。本文将围绕在能源系统中就如何向低碳社会转变所描述的四个方面进行详细阐述。这四方面的内容包括 低碳能源和无碳能源的利用,为能源的有效使用所采取的先进转化技术,具体到每个行业能源需求的措施实施,以及除了 3Es 这种评估低
41、碳社会实现可能性的其他一些评价指标。本论文将重点讨论具有以上四方面内容的四组能源模型,包括描述废物利用的模型,分析清洁煤炭技术的模型,交通行业模型以及农村能源模型。 减少能源相关活动排放的温室气体,最好的替代对象就是能源政策和能源系统设计。通过能源资源供应的初级能源代表了能源系统的供应方。这里的能源资源能够被分成三类:化石燃料,核能资源以及可再生能源。目前,最主要的能源供应是化石燃料。然 而化石燃料是有限的不可再生的能源,它的燃烧所释放的气体被认为是引起气候变化的主要原因。在 2006 年的相关数据中显示,当前世界的初级能源消费累积达到了 12Gtoe(相当于 12 千兆顿石油量),仅化石燃料
42、就占到了 81%的比例。与化石燃料对比,可再生能源是从不会使用枯竭的能源中获得的。最常见的可再生能源资源是具有生物起源的,即也被称为生物量。用这些能源来生产并不会导致气候变化,因为对这些能源的使用不会带来温室气体的排放。此外,从燃烧生物 质能中产生的二氧化碳排放量被认为是比较乐观的。目前,可再生能源为世界初级能源的需求提供了 13%的能源量,并且在总的电量生产中占到了 18%的比例,同样在 2006 年,放射性物质的能源使用,也被称为核能,在很多核电厂中被用来发电。同年这种能源占到了全球能源消费 6%的比例,而且在像中国和印度这样的国家里核能供应发展得很迅速。相反,在德国、比利时和瑞典这样的欧
43、洲国家里,由于他们制定的淘汰政策,核能在这些国家的使用已经呈现出逐步下降的趋势。 转换技术是能源系统体系结构中的中心组成部分。它们在能源系统中的作用是将来自于供 应方的资源转化为适合于交货或适合于需求方直接使用的能源形式。一些能源转换技术的可用性取决于这些能源资源被利用的方式。常规技术主要基于对化石燃料的燃烧:煤炭、石油和天然气发电厂。这些转换技术是大量温室气体排放的主要来源,尤其是 CO2 的排放。与此相反,源于可再生能源产品所用的转换技术则不会释放温室气体,这种技术也被认为是碳排量比较乐观的技术。 在任何社会的不同形式的活动中,能源的最终用户 被分 成能代表一个经济体系主要组成部分的各种行
44、业和部门。需求方被划分成四个行业的最终用户:住宅部门、商业部门、工业部门和交通部门 。除了以上四个部门,农业活动被归类为工业或住宅部门。工业和交通部门已经成为能源消费中比重最大的两个部门,分别占到了全球最终能源消费的 27%和 28%。值得关注的是在过去的十年中,交通部门已经成了在所有部门中能源消费增长最快的部门。为了实现低碳社会的美好愿望,目前已经存在了几种不同的方案。像生物质能和废物这样的能替代能源的混合物,是来自供应方的基本选择。可再生能源技术是能源转换技术替代技术的核心。需求方措施主要关注于能源使用效率的提高和如何更加谨慎地使用能源。低碳社会的实现涉及到如何将常规能源技术转化为低碳能源
45、技术。在能源计划中,对于向低碳社会转变的可能性和未来用何种方式取得这种转变这两方面的分析,对决策者来说是一项复杂的任务。对能源系统的评估和设计可通过建立能源模型来表现出来,同时这种模型是基于能代替能源系统中各种要素的数学公式基础上的。此外,这些模型就温室气体减排建议能给出更多的可信度。 能源活动会导致温 室气体的排放,温室气体的排放会导致气候变化,如果能 按低碳社会设想中所描述的低碳路线去发展的话,在即将到来的 10 年里,由气候变化导致的各种潜在影响会达到最小化。低碳社会设想的可行性取决于能源系统的设计。这种能源 模型能很好地分辨出包含在系统设计中的有关技术的有效性和适用性。基于此,能更好地
46、评估在研究和发展中的需要以及集成创新技术面临的障碍。 垃圾(能源资源的一种替代物)利用的模型应用显示了系统设计必须和城市生活垃圾的管理系统相结合。作为燃料和材料双重角色的城市生活垃圾在被循环利用的同时,能促使对它们的治理有一个技术上的提升。由垃圾发电技术和技术进步结合带来的有关温室气体减排的经济评估计划,在这些技术的传播过程中起了非常重要的作用,尤其是在发展中国家中表现得很明显。模型应用中显示的清洁煤技术普及的程度很大意义上取决于 对于技术自身的学习。通过类似于碳税这样的交易机制,能促使引进技术所需的投资和温室气体减排的完美平衡。在发展中国家,这些措施对有效利用是至关重要的。在交通部门,对于向
47、清洁燃料和车辆转化的可行性所建议的措施同样是采取能源模型。合适的选择是在中期使用生物燃料,在长期使用由燃料电池和混合动力技术启动的新型车辆。低碳的障碍可通过考虑技术的进步或税收的应用得以解决。针对发展中国家农村能源的能源模型则需要扩大它们的范围和可靠性。它们展示了在低碳社会和人类进步的同时,可再生能源技术和能转变传统燃料的技术如何带来更大的利益。 用能源模型研究尽管在替代方案中能很好 评估能源系统的可行性,但其研究结果不能被假定为某种预测。相反,考虑到对于全球环境的影响,能源模型增加了能源系统设计有效性的不确定因素。能源模型的可靠性能通过提高研究方法,研究数据的质量而有所增强。而这恰好在一个较长期的能源系统设计中,为解决低碳社会任务时,显得就尤为重要了。因此,模型不应被认为是控制决策的一个工具,模型更应被看成是政策 评估中能获得 清晰蓝图的一个支持工具。